首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we exploited the superior features of peptide nucleic acids (PNAs) to develop an efficient PNA zip-code microarray for the detection of hepatocyte nuclear factor-1alpha (HNF-1alpha) mutations that cause type 3 maturity onset diabetes of the young (MODY). A multi-epoxy linker compound was synthesized and used to achieve an efficient covalent linking of amine-modified PNA to an aminated glass surface. PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in a subsequent multiplex single base extension reaction using chimeric primers with 3' complementarity to the specific mutation site and 5' complementarity to the respective PNA zip-code sequence on the microarray. The primers were extended by a single base at each corresponding mutation site in the presence of biotin-labeled ddNTPs, and the products were hybridized to the PNA microarray. Compared to the corresponding DNA, the PNA zip-code sequence showed a much higher duplex specificity for the complementary DNA sequence. The PNA zip-code microarray was finally stained with streptavidin-R-phycoerythrin to generate a fluorescent signal. Using this strategy, we were able to correctly diagnose several mutation sites in exon 2 of HNF-1alpha with a wild-type and mutant samples including a MODY3 patient. This work represents one of the few successful applications of PNA in DNA chip technology.  相似文献   

2.
In the present study, we exploited the superior features of peptide nucleic acids (PNAs) to develop an efficient PNA zip-code microarray for the detection of hepatocyte nuclear factor-1α (HNF-1α) mutations that cause type 3 maturity onset diabetes of the young (MODY). A multi-epoxy linker compound was synthesized and used to achieve an efficient covalent linking of amine-modified PNA to an aminated glass surface. PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in a subsequent multiplex single base extension reaction using chimeric primers with 3′ complementarity to the specific mutation site and 5′ complementarity to the respective PNA zip-code sequence on the microarray. The primers were extended by a single base at each corresponding mutation site in the presence of biotin-labeled ddNTPs, and the products were hybridized to the PNA microarray. Compared to the corresponding DNA, the PNA zip-code sequence showed a much higher duplex specificity for the complementary DNA sequence. The PNA zip-code microarray was finally stained with streptavidin-R-phycoerythrin to generate a fluorescent signal. Using this strategy, we were able to correctly diagnose several mutation sites in exon 2 of HNF-1α with a wild-type and mutant samples including a MODY3 patient. This work represents one of the few successful applications of PNA in DNA chip technology.  相似文献   

3.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

4.
5.
Ribonuclease III cleaves the genome RNA of vesicular stomatitis virus (VSV) to yield an array of fragments which range in size from 3.5 to 0.1 x 10(6) daltons under partial digestion conditions. The locations of the RNase III cleavage sites which give rise to these fragments have been ordered relative to the 3' end of the virion RNA by digestion of 3' end-labeled RNA. Based on a map of the cleavage sites we predicted that fragments having the same size could be generated which contain information from each gene. Annealing of individual VSV mRNA probes to Northern blots of the separated RNase III-generated fragments confirmed that fragments having the same size are, in fact, generated which contain information from each coding region of the VSV genome. Analysis of maps of partial digestion products indicates that fragments having the same size arise repeatedly along the 3' half of the genome. The cleavage of VSV RNA by RNase III can be detected only if the nuclease treated molecules are denatured. This suggest that the structure features in VSV RNA which signal cleavage involve areas of higher order RNA structure.  相似文献   

6.
The 3,3'-diethylthiacarbocyanine (DiSC(2)(5)) dye is able to aggregate on full matched PNA-DNA duplexes by changing its absorption properties, which are manifested by an instantaneous colour shift from blue to purple. However the spontaneous aggregation of the dye also on mismatched duplexes and even on free PNA strands makes the test quite aspecific. Here it is demonstrated that the addition of succinyl-beta-cyclodextrin (Succ-beta-CyD) to the solutions containing PNA-DNA duplexes and the dye strongly enhances the specificity of the colour shift, allowing for a fast, very specific and extremely sensitive visual recognition of mismatches in DNA strands by using PNA probes in combination with the DiSC(2)(5) dye. The phenomenon has been studied by CD and NMR spectroscopies. The method has been optimized and preliminarily applied for the recognition of an apoE gene mutation in human DNA samples.  相似文献   

7.
The 3,3′-diethylthiacarbocyanine (DiSC2(5)) dye is able to aggregate on full matched PNA–DNA duplexes by changing its absorption properties, which are manifested by an instantaneous colour shift from blue to purple. However the spontaneous aggregation of the dye also on mismatched duplexes and even on free PNA strands makes the test quite aspecific. Here it is demonstrated that the addition of succinyl-β-cyclodextrin (Succ-β-CyD) to the solutions containing PNA–DNA duplexes and the dye strongly enhances the specificity of the colour shift, allowing for a fast, very specific and extremely sensitive visual recognition of mismatches in DNA strands by using PNA probes in combination with the DiSC2(5) dye. The phenomenon has been studied by CD and NMR spectroscopies. The method has been optimized and preliminarily applied for the recognition of an apoE gene mutation in human DNA samples.  相似文献   

8.
Adenovirus type 2 or lambda DNA was digested with the pH 4.0 endonuclease, purified from adenovirus 2-infected KB cells. The enzyme produces a limit digest of approximate size in the range of 140-210 base pairs long. The termini of the DNA fragments generated by the endonuclease digestion had 3'-P and 5'-OH groups. The 3' and 5' end groups of the products were analyzed. Our data indicate that 3' end group was a purine (68-76%), dA occuring about twice the frequency of dG. The 5' end group was either dG or dC with equal frequency. Data obtained by treatment of the 5' labeled endonuclease product of lambda DNA with single-strand specific S1 nuclease from Asperigillus oryzae or exonuclease VII from Escherichia coli indicated that the majority of the products had a short 5' protruding ends. The mode of cleavage of this endonuclease seems to be through initial formation of several single-strand breaks with some base specificity. If these breaks are at close proximity on opposite strands, double-stranded fragments with protruding ends are generated.  相似文献   

9.
10.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

11.
In Schizosaccharomyces pombe, interdependency in rRNA processing is mediated by a large protein complex (RAC) which contains independent binding sites for each of the transcribed spacers. The RAC complex exhibits no nuclease activity but dramatically alters the efficiency and specificity of the Pac1 nuclease, leading to the complete removal of the 3' ETS. Furthermore, the affinity of RAC protein for mutant 3' ETS correlates closely with in vivo effects on rRNA processing, and changes which disrupt RAC protein binding also inhibit Pac1 nuclease cleavage at the 3' end of the 25S rRNA sequence. The observations indicate that, in the presence of the RAC protein/3' ETS complex, cleavage by the RNase III-like homolog is not restricted to the known intermediate sites but also is directed at the 3' end of the 25S rRNA.  相似文献   

12.
13.
Abstract

Different modified PNA-DNA dimer-analogous synthons (I and II) were synthesized as phosphoramidites. These dimer units were assembled by a 5′-modified deoxythymidine and a modified PNA monomer. These synthons were used in the routine coupling procedure for oligonucleotides. Therefore no PNA coupling chemistry is necessary to synthesize PNA-DNA chimeric oligonucleotides. Various deoxyoligonucleotides were synthesized introducing the dimer blocks I and II at different positions in the sequences. Melting temperatures of the modified oligonucleotides with their complementary DNA analogues were determined.

Backbone modifications of oligonucleotides are required in the antisense strategy for protection against endonucleolytic cleavage in biological environment. Peptide nucleic acids (PNA fragments) are known to be nuclease resistant analogues, which show stable and discriminating hybridization. For this reason we prepared chimeric PNA-DNA oligomers by incorporation of two different modified PNA-DNA dimer blocks (Scheme A) into oligonucleotides. Melting temperatures of the modified oligonucleotides with their complementary DNA were determined.  相似文献   

14.
The length of newly synthesized DNA strands from mouse P-815 cells was analyzed after denaturation both by electrophoresis and by sedimentation in alkaline sucrose gradients. [3-H]-Thymidine pulses of 2-8 min at 37 degrees C predominantly label molecules of 20-60 S. With 30-s pulses at 25 degrees C, all the [3-H]thymidine appears in short DNA strands of 50-200 nucleotides. Thus, DNA strand elongation occurs discontinuously via Okazaki fragments at both the 5' end and the 3' end. In dodecylsulfate lysates, only 10% of the Okazaki fragments are found as single-stranded molecules. About 90% are resistant to hydrolysis by the single-strand-specific nuclease S-1 and band in isopycnic gradients at the buoyant density of double-stranded DNA. No evidence for ribonucleotides at the 5' end of Okazaki fragments was obtained either in isopycnic CsCl or Cs2SO4 gradients or after incubation with polynucleotide kinase and [gamma-32P]ATP.  相似文献   

15.
We describe here ligation-based strategy to detect mutations in BRCA1 utilizing zip-code microarray technology. In our first approach, PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then used as templates in a subsequent ligation reaction using two ligation primers that flanked the mutation site. The primary allele-specific primer is designed to contain a base of mutation site at its 3′ end with 5′ complementarity to the respective zip-code sequence while the secondary common primer is modified by biotin at its 3′ end. Depending on the genotype of samples at the mutation site, the nick between the two ligation primers can be sealed in the presence of DNA ligase. The ligation products were then hybridized on the zip-code microarray followed by staining with streptavidine-cy3 to generate a fluorescent signal. Using this strategy we successfully genotyped selected Korean-specific mutation sites in exon 11 of BRCA1 with a wild type and two heterozygote mutant samples. Furthermore, we also demonstrated that ligase chain reaction using unamplified genomic DNA as direct templates is enough to generate sufficient signals for correct genotypings in a multiplexed manner, verifying first that PCR is not essential for this microarray-based strategy.  相似文献   

16.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

17.
We have characterized a deoxyribonuclease from Streptomyces glaucescens that cleaves double-stranded DNA preferably between the dinucleotide 5'-CC-3'. The cleavage specificity was demonstrated by both analysis of the terminal nucleotides of the generated fragments and DNA sequencing of partially digested DNA. Digestion of lambda DNA with this enzyme resulted in the production of double-stranded fragments with 5' and/or 3'-protruding single-stranded tails. DNase I footprinting experiments indicated that the nuclease specifically binds to its cleavage sites on the DNA under non-catalytic conditions. The enzyme is not affected by cytosine methylation in hemimethylated DNA.  相似文献   

18.
We have previously characterized an extracellular nuclease from Pseudomonas BAL 31 which, in addition to other activities, displays a double-strand exonuclease activity which progressively shortens both strands of linear duplex DNA molecules from both termini. This degradation is accomplished without the introduction of detectable scissions away from the ends of the duplexes. When this nuclease is used to produce a series of progressively shortened samples from a linear duplex DNA, subsequent digestion of these samples with a site-specific restriction endonuclease and analysis of the resulting fragments by gel electrophoresis permits the rapid establishment of the order of the restriction enzyme fragments through the entire genome. This is accomplished by noting from the electropherograms the order in which the various restriction enzyme fragments become noticeably shortened or disappear. Using this method, the five cleavage sites for the endonuclease Hpa I and the single cleavage sites for the nucleases Hpa II and Pst I have been mapped in PM2 bacteriophage DNA. In a more stringent test of the method, 18 of the 24 fragments produced by cleavage of coliphage lambdab2b5c DNA with the Pst I nuclease have been mapped, and five of the six remaining fragments have been assigned to small regions of the genome.  相似文献   

19.
Saitoh K  Chen WJ 《Gene》2008,423(1):92-95
Occurrence of chimeric sequences and related artifacts in PCR cloning procedures gives us risks of over-estimation of haplotypes or alleles. Recombination among haplotypes occurs through template switching during PCR cycles or through random repair of mismatch sites on heteroduplex DNA by the host cell. To eliminate the chimeric cloning artifacts, we tested two alternative protocols using T7 endonuclease I cleavage of mismatch sites and re-extension of nascent strands. Though T7 endonuclease I effectively eliminated chimeric clones in some cases, it produced many short fragments. Protocol with single re-extension of PCR products successfully recovered non-recombinant clones with fewer short fragments. In spite of the improvement of allelic recovery through these two protocols, there were still a few recombinants that remained in both reaction mixtures, and thus interpretation of the results for haplotype diversity in a PCR-amplified DNA population should be cautionary. Because re-extension in a diluted reaction mixture is quick, inexpensive and effective, it is advisable to use this procedure for recovery of chromosomal alleles with PCR cloning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号