首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A radical reaction of low-density lipoprotein (LDL) causes fragmentation and cross-link of apolipoprotein B-100 (apoB). LDL (50 microg/ml) was subjected to the well-studied oxidation with Cu(2+) (1.67 microM). The concentration of alpha-tocopherol decreased to 10% of the initial level during the first 30 min. After this lag time, the conjugated diene content, as measured by absorption at 234 nm, started increasing and the residual apoB at 512 kDa determined by immunoblot after SDS-PAGE (sodium dodecylsulfate-polyacrylamide gel electrophoresis) was also decreased. The particle size of LDL determined by nondenaturing gradient gel electrophoresis decreased steadily during the initial 120 min, when residual native apoB was only 30% of the initial level. Plasma was also oxidized with Cu(2+) (400 microM). Under this condition, a clear lag time was not observed and alpha-tocopherol content, apoB, and the LDL particle size were decreased simultaneously. Based on these experiments, we propose that an oxidation reaction is involved in the formation of small dense LDL.  相似文献   

2.
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.  相似文献   

3.
We isolated subfractions of human plasma low density lipoprotein (LDL) using ion-exchange chromatography. Plasma LDL from normolipidemic subjects were applied to a DEAE Sepharose 6B column. After elution of the bulk of LDL at 150 mM NaCl (the major fraction), the residual LDL was eluted at 500 mM NaCl and designated as the minor fraction. The minor fraction, only less than 1% of total LDL, tended to be somewhat similar in certain properties to oxidized LDL, e.g., an increased negative charge, higher protein/cholesterol ratio, and a higher flotation density than native LDL. These results were consistent with data reported by Avogaro et al. (1988. Arteriosclerosis. 8: 79-87). However, assays of 125I-labeled LDL binding activity for LDL receptors equal to that of the major fraction. Incorporation of [14C]oleate into cholesteryl ester [acyl-CoA:cholesterol acyltransferase (ACAT) activity] in mouse peritoneal macrophages incubated with the minor fraction was only slightly greater than that with the major fraction. Incubation of the minor fraction with 0.5 microM Cu2+ caused a remarkable stimulation of ACAT activity, while stimulation by the major fraction required incubation with 5 microM Cu2+, suggesting that the minor fraction was relatively labile to oxidation. The minor but definite presence of a plasma LDL subfraction more negative and susceptible to oxidation implicates the possibility of its association with atherogenesis.  相似文献   

4.
Yang C  Gu ZW  Yang M  Lin SN  Siuzdak G  Smith CV 《Biochemistry》1999,38(48):15903-15908
Oxidative modifications of low-density lipoproteins (LDL) may contribute to the pathogenesis of atherosclerosis. Although the oxidation products of the lipid components of LDL have been studied extensively, less is known about the oxidation products of the apoprotein, apolipoprotein B-100. To identify the specific oxidative modifications, we oxidized LDL in the presence of Cu(2+), treated with DNPH, precipitated and delipidated the protein, digested the protein with trypsin, and analyzed the peptides by high-performance liquid chromatography. We isolated nine peptides that exhibited measurable absorbance at 365 nm, which is characteristic of hydrazones derived from DNPH and is not observed in peptides derived from unoxidized LDL. Unexpectedly, we obtained the same peptides with absorbance at 365 nm in Cu(2+)-oxidized LDL not treated with DNPH. N-terminal sequence analyses and mass spectrometry indicated that the peptides isolated from the Cu(2+)-oxidized LDL all contained kynurenine residues in place of Trp residues found in the native apoprotein. The product profile we observed in Cu(2+)-oxidized LDL was remarkably different from the profiles observed in LDL oxidized by HOCl or myeloperoxidase in vitro, and the preferential oxidation of Trp to kynurenine in Cu(2+)-catalyzed oxidation of LDL contrasts with the products observed following oxidation of LDL with HOCl or myeloperoxidase. Our studies to date support the working hypothesis that the specific products of protein oxidation are sufficiently distinct to be developed as biomarkers of proposed mechanisms of oxidation of LDL and biological molecules in other toxicities and diseases.  相似文献   

5.
Atherosclerotic plaques result from the excessive deposition of cholesterol esters derived from lipoproteins and lipoprotein fragments. Tissue macrophage within the intimal space of major arterial vessels have been shown to play an important role in this process. We demonstrate in a transfection system using two human cell lines that the macrophage scavenger receptor CD36 selectively elicited lipid uptake from Cu(2+)-oxidized high density lipoprotein (HDL) but not from native HDL or low density lipoprotein (LDL). The uptake of oxHDL displayed morphological and biochemical similarities with the CD36-dependent uptake of oxidized LDL. CD36-mediated uptake of oxidized HDL by macrophage may therefore contribute to atheroma formation.  相似文献   

6.
Electronegative low-density lipoprotein (LDL(-)) is a minor LDL subfraction present in plasma with increased platelet-activating factor acetylhydrolase (PAF-AH) activity. This activity could be involved in the proinflammatory effects of LDL(-). Our aim was to study the presence of additional phospholipolytic activities in LDL(-). Total LDL was fractionated into electropositive (LDL(+)) and LDL(-) by anion-exchange chromatography, and phospholipolytic activities were measured by fluorometric methods. Phospholipolytic activity was absent in LDL(+) whereas LDL(-) presented activity against lysophosphatidylcholine (LPC, 82.4 +/- 34.9 milliunits/mg of apoB), sphingomyelin (SM, 53.3 +/- 22.5 milliunits/mg of apoB), and phosphatidylcholine (PC, 25.7 +/- 4.3 milliunits/mg of apoB). LDL(-), but not LDL(+), presented spontaneous self-aggregation at 37 degrees C in parallel to phospholipid degradation. This was observed in the absence of lipid peroxidation and suggests the involvement of phospholipolytic activity in self-aggregation of LDL(-). Phospholipolytic activity was not due to PAF-AH, apoE, or apoC-III and was not increased in LDL(+) modified by Cu (2+) oxidation, acetylation, or secretory phospholipase A 2 (PLA 2). However, LDL(-) efficiently degraded phospholipids of lipoproteins enriched in LPC, such as oxidized LDL or PLA 2-LDL, but not native or acetylated LDL. This finding supports that LPC is the best substrate for LDL(-)-associated phospholipolytic activity. These results reveal novel properties of LDL(-) that could play a significant role in its atherogenic properties.  相似文献   

7.
Oxidized-LDL are involved in atherosclerosis pathogenesis, while the production of anti-ox-LDL monoclonal antibodies is critical for the development of diagnostic tools. This work reports the production of four monoclonal antibodies raised against human LDL, oxidized at different levels by the myeloperoxidase system. Characterization of these monoclonal antibodies showed that they do not cross-react with neither native LDL, VLDL nor hydrogen peroxide or Cu(2+)-oxidized LDL. Three of these antibodies recognize an epitope restricted to the protein moiety of mildly oxidized LDL, whereas the fourth antibody was partly dependent on the lipid presence of strongly oxidized LDL. All the antibodies were shown to react with human atherosclerotic lesions.  相似文献   

8.
Sobal G  Menzel JE  Sinzinger H 《Life sciences》2000,66(20):1987-1998
It is generally accepted that oxidation of low-density lipoproteins (LDL) is a causal factor in the development of atherosclerosis. Non-enzymatic glycosylation of LDL, i.e."glycation", plays a central role in late complications of diabetes mellitus and may initiate and/or accelerate the oxidation process. Therefore, the inhibition of this processes is of major therapeutic relevance. The influence of acetylsalicylic acid (ASA) on the oxidation of native and glycated LDL was studied in vitro. LDL (0.25 mg protein/ml ) was oxidatively modified with 5.0 microM CuSO4. Only at "supratherapeutical" ASA concentrations in the range 0.06-2.0 mg /ml we found a significant concentration-dependent inhibition of LDL oxidation both for native and glycated LDL, which was from 0.2 mg/ml upwards significantly more marked for native LDL than for glycated LDL. The maximal inhibitory effect occurred at 2.0 mg/ml with 89.6% inhibition of LDL-oxidation for native LDL and 64.4% for glycated LDL. At 0.2 mg/ml ASA the respective inhibitory values were 38.5% and 31.0%. For glycated LDL the ASA doses of maximal- and approximately 50%-inhibition, as found for native LDL, were chosen to investigate the inhibitory effect on 2,4,8 and 24 hours oxidation of glycated LDL to monitor the time-dependency of inhibition by ASA. This revealed that ASA only delayed, not permanently inhibited LDL oxidation.  相似文献   

9.
Lipoprotein lipase (LPL) acts independently of its function as triglyceride hydrolase by stimulating macrophage binding and uptake of native, oxidized and glycated LDL. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in monocyte/macrophages, where they control cholesterol homeostasis. Here we study the role of PPARs in the regulation of LPL expression and activity in human monocytes and macrophages. Incubation of human monocytes or macrophages with PPARalpha or PPARgamma ligands increases LPL mRNA and intracellular protein levels. By contrast, PPAR activators decrease secreted LPL mass and enzyme activity in differentiated macrophages. These actions of PPAR activators are associated with a reduced uptake of glycated LDL and could influence atherosclerosis development associated with diabetes.  相似文献   

10.
Oxidized LDL is present within atherosclerotic lesions, demonstrating a failure of antioxidant protection. A normal human serum ultrafiltrate of Mr below 500 was prepared as a model for the low Mr components of interstitial fluid, and its effects on LDL oxidation were investigated. The ultrafiltrate (0.3%, v/v) was a potent antioxidant for native LDL, but was a strong prooxidant for mildly oxidized LDL when copper, but not a water-soluble azo initiator, was used to oxidize LDL. Adding a lipid hydroperoxide to native LDL induced the antioxidant to prooxidant switch of the ultrafiltrate. Uric acid was identified, using uricase and add-back experiments, as both the major antioxidant and prooxidant within the ultrafiltrate for LDL. The ultrafiltrate or uric acid rapidly reduced Cu2+ to Cu+. The reduction of Cu2+ to Cu+ may help to explain both the antioxidant and prooxidant effects observed. The decreased concentration of Cu2+ would inhibit tocopherol-mediated peroxidation in native LDL, and the generation of Cu+ would promote the rapid breakdown of lipid hydroperoxides in mildly oxidized LDL into lipid radicals. The net effect of the low Mr serum components would therefore depend on the preexisting levels of lipid hydroperoxides in LDL. These findings may help to explain why LDL oxidation occurs in atherosclerotic lesions in the presence of compounds that are usually considered to be antioxidants.  相似文献   

11.
Low density lipoprotein (LDL) and oxidized LDL are associated with collagen in the arterial intima, where the collagen is coated by the small proteoglycan decorin. When incubated in physiological ionic conditions, decorin-coated collagen bound only small amounts of native and oxidized LDL, the interaction being weak. When decorin-coated collagen was first allowed to bind lipoprotein lipase (LPL), binding of native and oxidized LDL increased dramatically (23- and 7-fold, respectively). This increase depended on strong interactions between LPL that was bound to the glycosaminoglycan chains of the collagen-bound decorin and native and oxidized LDL (kDa 12 and 5.9 nM, respectively). To distinguish between binding to monomeric (inactive) and dimeric (catalytically active) forms of LPL, affinity chromatography on heparin columns was conducted, which showed that native LDL bound to the monomeric LPL, whereas oxidized LDL, irrespective of the type of modification (Cu(2+), 2, 2'-azobis(2-amidinopropane)hydrochloride, hypochlorite, or soybean 15-lipoxygenase), bound preferably to dimeric LPL. However, catalytic activity of LPL was not required for binding to oxidized LDL. Finally, immunohistochemistry of atherosclerotic lesions of human coronary arteries revealed specific areas in which LDL, LPL, decorin, and collagen type I were present. The results suggest that LPL can retain LDL in atherosclerotic lesions along decorin-coated collagen fibers.  相似文献   

12.
Retention of low density lipoproteins (LDL) by vascular proteoglycans and their subsequent oxidation are important in atherogenesis. Lipoprotein lipase (LPL) can bind LDL and proteoglycans, although the effect of different proteoglycans to influence the ability of LPL to act as a bridge in the formation of LDL-proteoglycan complexes is unknown. Using an electrophoretic gel mobility shift assay, [(35)S]SO(4)-labeled versican and biglycan, two extracellular proteoglycans secreted by vascular cells, bound native LDL in a saturable fashion. The addition of bovine milk LPL dose-dependently increased the binding of native LDL to both versican and biglycan, approaching saturation at 30-40 microgram/ml LPL for versican and 20 microgram/ml LPL for biglycan. LDL was oxidized by several methods, including copper, 2, 2-azo-bis(2-amidinopropane)-2HCl and hypochlorite. Extensively copper- and hypochlorite-oxidized LDL bound poorly to versican and biglycan. Proteoglycan binding to LDL was correlated inversely with the extent of LDL; however, the addition of LPL to oxidized LDL together with biglycan or versican allowed the oxidized LDL to bind the proteoglycans in an LPL dose-dependent manner. Addition of LPL had a greater relative effect on the binding of extensively oxidized LDL to proteoglycans compared with native LDL. LPL had a slightly greater effect on increasing the binding of native and oxidized LDL to biglycan than versican. Thus, LPL in the artery wall might increase the atherogenicity of oxidized LDL, since it enables its binding to vascular biglycan and versican.  相似文献   

13.
I Autio  O Jaakkola  T Solakivi  T Nikkari 《FEBS letters》1990,277(1-2):247-249
The effects of human native and Cu2(+)-oxidized low-density lipoprotein (LDL) were tested on the migration of cultured bovine aortic smooth muscle cells (SMCs) in blind-well chambers. LDL oxidation was controlled by measuring the formation of conjugated dienes and lipid hydroperoxides, and by agarose gel electrophoresis. Oxidized LDL stimulated SMC migration, and the effect was dose-dependent up to 200 microgram/ml. The stimulation was chemotactic in nature. Native LDL was without significant activity. The results suggest that oxidized LDL may contribute to the migration of medial SMCs into the intima during atherogenesis.  相似文献   

14.
Radical reaction of low-density lipoprotein (LDL) is a key step in atherogenesis and causes both a decrease in the sialic acid moiety and modification of apolipoprotein B-100 (apoB). Although apoB modification (cross-link and fragmentation) increases in atherosclerosis, the change in apoB-bound sialic acid in atherosclerosis is controversial. To elucidate the physiological implications of desialylation of LDL by radical reaction, the reactivity of sialic acid of LDL was compared with that of apoB, which underwent facile fragmentation in radical reactions. ApoB was determined by immunoblot analysis with anti-apoB antiserum, and the sialic acid moiety was measured by blot analysis with a biotin-bound lectin [biotin-SSA from Japanese elderberry (Sambucus sieboldiana)] specific to sialic acid. When human LDL was oxidized with Cu(2+) at 37 degrees C, apoB and apoB-attached sialic acid decreased simultaneously. Comparison of the staining bands with anti-apoB and with biotin-SSA shows that sialic acid moieties still remain on fragmented apoB proteins, indicating that the decrease in sialic acid is much slower than that of apoB fragmentation. In addition, human plasma was oxidized with 400 microM of Cu(2+) at 37 degrees C. Similar analysis indicates that the decrease in sialic acid attached to apoB also results from the fragmentation of apoB. This study indicates that the fragmentation of apoB proceeds at a much faster rate than the decrease in sialic acid content when a free radical reaction is induced in isolated LDL as well as in plasma LDL exposed to Cu(2+)-induced oxidative stress. On the basis of these results, the modification of apoB is much more sensitive than the decrease in sialic acid as an indicator of oxidative stress.  相似文献   

15.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

16.
Intake of flavanol-rich food or beverages was previously shown to ameliorate endothelial function and to enhance bioactivity of nitric oxide with individuals at risk for cardiovascular disease. Here, we examined whether the major dietary flavanol, (-)-epicatechin, counteracts the action of oxidized LDL on endothelial cells, an action considered pivotal for endothelial dysfunction in the pathogenesis of atherosclerosis. Oxidation by myeloperoxidase plus nitrite rendered human LDL cytotoxic towards endothelial cells, more so than oxidation by Cu2+. Oxidized LDL also caused a marked loss of endothelial NO synthase protein which did not occur in the presence of a proteasome inhibitor, lactacystin. Both actions of oxidized LDL, which were not evoked by native LDL, were effectively counteracted by (-)-epicatechin. We conclude that dietary flavanols contribute to protection of the integrity of endothelial cells not only by scavenging free radicals but also by maintaining endothelial NO synthase.  相似文献   

17.
Oxidatively modified low-density lipoprotein (LDL) has been found in vivo, and oxidized LDL (oxLDL) could bind to scavenger receptors, leading to foam cell formation. Macrophages bear a number of different scavenger receptors for oxLDL, and macrophages of different origins may have a different scavenger receptor repertoire. In addition, LDL oxidized to different degrees may differ in the ability to bind macrophage scavenger receptors. In this study, we characterized the patterns of the binding and uptake of differently oxidized LDL in mouse peritoneal macrophages (MPM) and human THP-1 macrophages, and the influence of negative charge and oxidation-specific epitopes in oxLDL on these processes. Thresholds of increased binding and uptake in MPM were found when LDL was oxidized to the degrees with a relative electrophoretic mobility (REM) of 2.6 (minor threshold) and 3.0 (major threshold), corresponding to 49 and 57%, respectively, of the loss of free amino groups in these oxLDL. There was no threshold for the binding of oxLDL to THP-1 macrophages, while for uptake, a major threshold with REM of 3.0 (57% free amino groups lost) was found. The presence of the F(ab')(2) fragments of the monoclonal antibody OB/04, which was raised against copper-oxidized LDL, led to the reduction of the binding and uptake, respectively, of Eu(3+)-oxLDL (REM:3.6) in MPM by 31 and 29%, and by 19 and 22% in THP-1 macrophages. It is concluded that LDL oxidized to different degrees binds differently to macrophages, and the patterns of binding and uptake are different for MPM and human THP-1 macrophages. Both, the negative charge and the oxidation-specific epitopes of oxLDL are involved in these processes.  相似文献   

18.
This study examined the roles of low-density lipoprotein (LDL) lipid oxidation and peroxide breakdown in its conversion to a form rapidly taken up by mouse peritoneal macrophages. Oxidation of the LDL without decomposition of the hydroperoxide groups was performed by exposure to gamma radiation in air-saturated solutions. Virtually complete decomposition of the hydroperoxides was achieved by treatment of the irradiated LDL with Cu2+ under strictly anaerobic conditions. No uncontrolled LDL uptake by macrophages occurred when the lipoprotein contained less than 150 hydroperoxide groups per particle. More extensively oxidized LDL was taken up and degraded by mouse macrophages significantly faster than the native lipoprotein. The uptake was greatly enhanced by treatment of the oxidized LDL with Cu2+. A significant proportion of the LDL containing intact or copper-decomposed LDL hydroperoxide groups accumulated within the macrophages without further degradation. Treatment of the radiation-oxidized LDL with Cu2+ was accompanied by aggregation of the particles. Competition studies showed that the oxidized LDL was taken up by macrophages via both the LDL and the scavenger receptors, whereas the copper-treated lipoprotein entered the cells only by the scavenger pathway. Phagocytosis also played an important role in the metabolism of all forms of the extensively modified LDL. Our results suggest that minimally-oxidized LDL is not recognized by the macrophage scavenger receptors unless the lipid hydroperoxide groups are decomposed to products able to derivatize the apo B protein.  相似文献   

19.
Arterial wall lipid retention is believed to be due primarily to ionic interactions between lipoproteins and proteoglycans. Thus, oxidized low density lipoproteins (LDL), with decreased positive charge relative to native LDL, should have decreased interaction with negatively charged proteoglycans. However, oxidized LDL does accumulate within arterial lesions. Therefore, this study investigated the binding of native and oxidized LDL to a complex smooth muscle extracellular matrix and the role of ionic charge interactions in their binding. LDL was modified with 2,2-azo-bis(2-amidinopropane)-2HCl, hypochlorite, soybean lipoxygenase, and phospholipase or copper sulfate. The extracellular matrix had 15- to 45-fold greater binding capacity for the different forms of oxidized LDL than for native LDL. However, the affinity of binding for all forms of oxidized LDL was high (K(a) = approximately 10(-9) M) and was similar to that for native LDL. Preincubation of the lipoproteins with chondroitin sulfate decreased the binding of native LDL, but had no effect on the binding of oxidized LDL. Digestion of matrices with chondroitin ABC lyase and heparinase decreased the binding of native LDL, but increased the binding of oxidized LDL; matrix digestion with pronase or trypsin markedly reduced the binding of both native and oxidized LDL.Thus, the binding of native LDL involves matrix proteoglycans, whereas the binding of oxidized LDL involves a nonproteoglycan component(s) of the matrix. The markedly enhanced retention of oxidized LDL compared with native LDL may play an important role in the progression of atherosclerosis.  相似文献   

20.
The nonlinear optical response of human normal and oxidized by Cu2+ low-density lipoproteins particles (LDL), were investigated by the Z-scan technique as a function of temperature and concentration of LDL particles. The Z-scan signals increase linearly with concentration of normal LDL particles, following the usual Beer-Lambert law in a broad range of concentrations. The oxidized LDL particles do not show nonlinear optical response. On the other hand, normal LDL increases its nonlinear optical response as a function of temperature. These behaviors can be attributed to an absorbing element that is modified by the oxidative process. Contrarily, changes in the physical state of the cores and conformation of the ApoB100 protein due to an increase in temperature seems to enhance their nonlinear optical properties. This tendency is not due to aggregation of particles. The main contribution to the nonlinear optical response of normal LDL particles comes from the phospholipid fraction of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号