首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention.  相似文献   

2.
The addition of anti-IgM to the immature B lymphoma cell line WEHI-231 resulted in breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). These reactions have recently been demonstrated in mature resting B cells stimulated with anti-IgM, as well. In addition to Ins(1,4,5)P3, inositol tetrakisphosphate (InsP4) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) were rapidly generated in WEHI-231 cells upon stimulation of the antigen receptor with anti-IgM. These two inositol polyphosphates are probably generated from Ins(1,4,5)P3 by phosphorylation to yield InsP4 and removal of the 5-phosphate from InsP4 to yield Ins(1,3,4)P3. It is possible that these inositol polyphosphates play a second messenger role in mediating the biologic effects of antigen-receptor signaling. It had previously been shown that anti-IgM also causes an increase in cytoplasmic free calcium. Therefore, the relationship between Ca2+ elevation and phosphoinositide breakdown was investigated. Although elevation of cytoplasmic Ca2+ with ionophores can trigger phosphoinositide breakdown, this required levels of Ca2+ well beyond those normally seen in response to anti-IgM. Thus, the Ca2+ elevation seen in response to anti-IgM cannot be the event controlling phosphoinositide breakdown. WEHI-231 cells have been shown to have a calcium storage compartment that releases Ca2+ in the presence of Ins(1,4,5)P3; therefore, it is likely that anti-IgM stimulates phosphoinositide breakdown as a primary event and this leads to the elevation of cytoplasmic Ca2+.  相似文献   

3.
Changes in the intracellular free calcium concentration ([Ca2+]i) control many important processes in excitable and nonexcitable cells. In cerebellar Purkinje neurons, increases in [Ca2+]i modulate excitability by turning on calcium-activated potassium and chloride conductances, and modifying the synaptic efficacy of inhibitory and excitatory inputs to the cell. Calcium release from the intracellular stores plays an important role in the regulation of [Ca2+]i. Purkinje neurons contain both inositol trisphosphate (InsP3) and ryanodine (Ry) receptors. With the exception of the dendritic spines, where only InsP3 receptors are found, InsP3 and Ry receptors are present in the entire cell. The distribution of the two calcium release channels, however, is not uniform, and it has been suggested that InsP3 and Ry receptors use separate Ca2+ pools. The functional properties of InsP3 and Ry Ca2+ pools were investigated by flash photolysis and single-cell microspectrofluorimetry. It was found that depletion of ryanodine-sensitive Ca2+ stores renders InsP3 incapable of releasing more Ca2+ from the stores. Abolishing calcium-induced calcium release by blocking ryanodine receptors with ruthenium red did not have a significant effect on InsP3-evoked Ca2+ release. It is concluded that InsP3 receptors use the same functional Ca2+ pool as that utilized by Ry receptors in Purkinje neurons.  相似文献   

4.
Huntington's disease (HD) is caused by polyglutamine expansion (exp) in huntingtin (Htt). The type 1 inositol (1,4,5)-triphosphate receptor (InsP3R1) is an intracellular calcium (Ca2+) release channel that plays an important role in neuronal function. In a yeast two-hybrid screen with the InsP3R1 carboxy terminus, we isolated Htt-associated protein-1A (HAP1A). We show that an InsP3R1-HAP1A-Htt ternary complex is formed in vitro and in vivo. In planar lipid bilayer reconstitution experiments, InsP3R1 activation by InsP3 is sensitized by Httexp, but not by normal Htt. Transfection of full-length Httexp or caspase-resistant Httexp, but not normal Htt, into medium spiny striatal neurons faciliates Ca2+ release in response to threshold concentrations of the selective mGluR1/5 agonist 3,5-DHPG. Our findings identify a novel molecular link between Htt and InsP3R1-mediated neuronal Ca2+ signaling and provide an explanation for the derangement of cytosolic Ca2+ signaling in HD patients and mouse models.  相似文献   

5.
The inositol 1,4,5-trisphosphate receptors   总被引:8,自引:0,他引:8  
Bezprozvanny I 《Cell calcium》2005,38(3-4):261-272
The inositol (1,4,5)-trisphosphate receptors (InsP3R) are the intracellular calcium (Ca2+) release channels that play a key role in Ca2+ signaling in cells. Three InsP3R isoforms-InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals. A single InsP3R isoform is expressed in Drosophila melanogaster (DmInsP3R) and Caenorhabditis elegans (CeInsP3R). The progress made during last decade towards understanding the function and the properties of the InsP3R is briefly reviewed in this chapter. The main emphasis is on studies that revealed structural determinants responsible for the ligand recognition by the InsP3R, ion permeability of the InsP3R, modulation of the InsP3R by cytosolic Ca2+, ATP and PKA phosphorylation and on the recently identified InsP3R-binding partners. The main focus is on the InsP3R1, but the recent information about properties of other InsP3R isoforms is also discussed.  相似文献   

6.
We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor.  相似文献   

7.
Pituitary gonadotrophs express non-desensitizing gonadotropin-releasing hormone (GnRH) receptors and their activations leads to inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ mobilization. When added in physiological concentration range GnRH induces baseline Ca2+ oscillations, whereas in higher concentrations it induces a prolonged spike response accompanied with non-oscillatory or oscillatory plateau response. Here, we studied the recovery of calcium signaling during repetitive stimulation with short (10-30 s) GnRH pulses and variable interpulse intervals in neonatal gonadotrophs perfused with Ca2+/Na+ -containing, Ca2+ -deficient/Na+ -containing, and Ca2+ -containing/Na+ -deficient media. In Ca2+/Na+ -containing medium, baseline Ca2+ oscillations recovered without refractory period and with a time constant of approximately 20 s, whereas the recovery of spike response occurred after 25-35 s refractory period and with a time constant of approximately 30 s. During repetitive GnRH stimulation, removal of Ca2+ had only a minor effect on baseline oscillations but abolished spike response, whereas removal of Na+ slightly extended duration of baseline oscillations and considerably prolonged spike response. These results indicate that two calcium handling mechanisms are operative in gonadotrophs: redistribution of calcium within InsP3-sensitive and -insensitive pools and a sodium-dependent calcium efflux followed by calcium influx. Redistribution of Ca2+ within the cell leads to rapid recovery of InsP3-dependent pool, whereas the Na+ -dependent Ca2+ efflux pathway is activated by spike response and limits the time of exposure to elevated cytosolic Ca2+ concentrations.  相似文献   

8.
Inositol hexakisphosphate (InsP6) increased 45Ca2+ uptake in cultured cerebellar granule cells. This increase was concentration dependent (EC50 = 20 microM), exhibited slow kinetics, and was present after 5 days of cell maturation in culture. InsP6 also enhanced D-[3H]aspartate release in cerebellar granule cells at 11-12 days in vitro. Stimulation of 45Ca2+ uptake was also produced by inositol pentakisphosphate but not by inositol 1,3,4,5-tetrakisphosphate. The increase in 45Ca2+ influx induced by InsP6 was independent of extracellular Na+ and was only partially reduced by the organic calcium channel blocker nifedipine. The intrinsic action of InsP6 was not affected by competitive or noncompetitive glutamate receptor antagonists. In addition, stimulations of 45Ca2+ uptake by InsP6 and glutamate were additive. These data provide evidence that InsP6 directly activates a specific population of neurons in the CNS.  相似文献   

9.
Hormones that act to release Ca2+ from intracellular stores initiate a signaling cascade that culminates in the production of inositol 1,4,5-trisphosphate (InsP3). The Ca2+ response mediated by InsP3 is not a sustained increase in the cytosolic Ca2+ concentration, but rather a series of periodic spikes that manifest as waves in larger cells. In vitro studies have determined that the key positive feedback parameter driving spikes and waves is a highly localized direct Ca(2+)-activation of InsP3-gated Ca2+ channels. Advances in fluorescent Ca2+ imaging have facilitated the resolution of individual positive feedback units. These studies have revealed that there are several modes of channel coupling underlying global Ca2+ signals; single channel openings or Ca2+ "blips," synchronized clusters of channels or Ca2+ "puffs," and cell wide calcium waves. It appears that the channel clusters that produce Ca2+ puffs are synchronized by the highly localized positive feedback that was predicted by the in vitro studies of channel regulation. Localization of InsP3-induced Ca2+ signals has been shown to be important for activation of several cellular processes including uni-directional salt flow and mitochondrial activation.  相似文献   

10.
Intracellular calcium signals are responsible for initiating a spectrum of physiological responses. The caldendrins/calcium-binding proteins (CaBPs) represent mammal-specific members of the CaM superfamily. CaBPs display a restricted pattern of expression in neuronal/retinal tissues, suggesting a specialized role in Ca2+ signaling in these cell types. Recently, it was reported that a splice variant of CaBP1 functionally interacts with inositol 1,4,5-trisphosphate (InsP3) receptors to elicit channel activation in the absence of InsP3 (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). These data indicate a new mode of InsP3 receptor modulation and hence control of intracellular Ca2+ concentration ([Ca2+]i) in neuronal tissues. We have analyzed the biochemistry of the long form splice variant of CaBP1 (L-CaBP1) and show that, in vitro, a recombinant form of the protein is able to bind Ca2+ with high affinity and undergo a conformational change. We also describe the localization of endogenous and overexpressed L-CaBP1 in the model neuroendocrine PC12 cell system, where it was associated with the plasma membrane and Golgi complex in a myristoylation-dependent manner. Furthermore, we show that overexpressed L-CaBP1 is able to substantially suppress rises in [Ca2+]i in response to physiological agonists acting on purinergic receptors and that this inhibition is due in large part to blockade of release from intracellular Ca2+ stores. The related protein neuronal calcium sensor-1 was without effect on the [Ca2+]i responses to agonist stimulation. Measurement of [Ca2+] within the ER of permeabilized PC12 cells demonstrated that LCaBP1 directly inhibited InsP3-mediated Ca2+ release. Expression of L-CaBP1 also inhibited histamine-induced [Ca2+]i oscillations in HeLa cells. Together, these data suggest that L-CaBP1 is able to specifically regulate InsP3 receptor-mediated alterations in [Ca2+]i during agonist stimulation.  相似文献   

11.
《The Journal of cell biology》1995,131(6):1539-1545
Cytokinesis, a key step in cell division, is known to be precisely regulated both in its timing and location. At present, the regulatory mechanism of cytokinesis is not well understood, although it has been suggested that calcium signaling may play an important role in this process. To test this notion, we introduced a sensitive fluorescent Ca2+ indicator into the zebrafish embryo and used confocal microscopy to measure the spatiotemporal variation of intracellular free Ca2+ concentration ([Ca2+]i) during cell cleavage. It was evident that a localized elevation of [Ca2+]i is closely associated with cytokinesis. First, we found that during cytokinesis, the level of free Ca2+ was elevated locally precisely at the cleavage site. Second, the rise of free Ca2+ was very rapid and occurred just preceding the initiation of furrow contraction. These observations strongly suggest that cytokinesis may be triggered by a calcium signal. In addition, we found that this cytokinesis-associated calcium signal arose mainly from internal stores of Ca2+ rather than from external free Ca2+; it could be blocked by the antagonist of inositol trisphosphate (InsP3) receptors. These findings suggest that the localized elevation of [Ca2+]i is caused by the release of free Ca2+ from the endoplasmic reticulum through the InsP3-regulated calcium channels.  相似文献   

12.
Intracellular Ca2+ signalling evoked by Ca2+ mobilizing agonists, like angiotensin II in the adrenal gland, involves the activation of inositol(1,4,5)trisphosphate(InsP3)-mediated Ca2+ release from internal stores followed by activation of a Ca2+ influx termed capacitative calcium entry. Here we report the amino acid sequence of a functional capacitative Ca2+ entry (CCE) channel that supports inward Ca2+ currents in the range of the cell resting potential. The expressed CCE channel opens upon depletion of Ca2+ stores by InsP3 or thapsigargin, suggesting that the newly identified channel supports the CCE coupled to InsP3 signalling.  相似文献   

13.
The second messenger function of inositol 1,4,5-trisphosphate (InsP3) is now well-defined--it mobilizes Ca2+ from intracellular stores so that cystolic Ca2+ increases. However, the function of inositol 1,3,4,5-tetrakisphosphate (InsP4) has proved much more difficult to fathom, as it has been reported to exert a wide variety of effects in a collection of experimental systems. In this review, a proposed molecular mechanism for InsP4's actions is discussed; it is suggested that InsP4 is the second messenger that controls Ca2+ entry into cells, and that it does so by binding to a receptor which itself interacts, directly or indirectly, with the receptor for InsP3. It is proposed that this is InsP4's true physiological function, but the mechanism by which it exerts this function has led to confusing data concerning its action, and also to some misconceptions about how inositol phosphates control Ca2+ entry.  相似文献   

14.
Ca2+ signaling via the inositol 1,4,5-trisphosphate receptor (InsP3R) is a ubiquitous mechanism for regulation of cell function, yet very little is known about the role of the InsP3R in specific disease states. Converging lines of evidence suggest that the liver may provide a model for the role of the InsP3R in health and disease. Ca2+ signaling is mediated entirely by the InsP3R in hepatocytes and cholangiocytes, the two types of epithelia in the liver. Here we review the role of specific InsP3R isoforms and the physiological effects of InsP3R-mediated Ca2+ signals in both of these types of epithelia. In addition, we review evidence that the InsP3R is lost from cholangiocytes in cholestatic forms of liver disease, and discuss this as a possible final common pathway for cholestasis.  相似文献   

15.
Chromogranins A and B (CGA and CGB) are high capacity, low affinity calcium (Ca2+) storage proteins found in many cell types most often associated with secretory granules of secretory cells but also with the endoplasmic reticulum (ER) lumen of these cells. Both CGA and CGB associate with inositol 1,4,5-trisphosphate receptor (InsP3R) in a pH-dependent manner. At an intraluminal pH of 5.5, as found in secretory vesicles, both CGA and CGB bind to the InsP3R. When the intraluminal pH is 7.5, as found in the ER, CGA totally dissociates from InsP3R, whereas CGB only partially dissociates. To investigate the functional consequences of the interaction between the InsP3R and CGB monomers or CGA/CGB heteromers, purified mouse InsP3R type I were fused to planar lipid bilayers and activated by 2 microM InsP3. In the presence of luminal CGB monomers or CGA/CGB heteromers the InsP3R/Ca2+ channel open probability and mean open time increased significantly. The channel activity remained elevated when the pH was changed to 7.5, a reflection of CGB binding to the InsP3R even at pH 7.5. These results suggest that CGB may play an important modulatory role in the control of Ca2+ release from the ER. Furthermore, the difference in the ability of CGA and CGB to regulate the InsP3R/Ca2+ channel and the variability of CGA/CGB ratios could influence the pattern of InsP3-mediated Ca2+ release.  相似文献   

16.
Thyrotropin-releasing hormone (TRH) stimulation of prolactin secretion from GH3 cells, cloned rat pituitary tumor cells, is associated with 1) hydrolysis of phosphatidylinositol 4,5-bisphosphate to yield inositol trisphosphate (InsP3) and 2) elevation of cytoplasmic free Ca2+ concentration [( Ca2+]i), caused in part by mobilization of cellular calcium. We demonstrate, in intact cells, that TRH mobilizes calcium and, in permeabilized cells, that InsP3 releases calcium from a nonmitochondrial pool(s). In intact cells, TRH caused a loss of 16 +/- 2.7% of cell-associated 45Ca which was not inhibited by depleting the mitochondrial calcium pool with uncoupling agents. Similarly, TRH caused an elevation of [Ca2+]i from 127 +/- 6.3 nM to 375 +/- 54 nM, as monitored with Quin 2, which was not inhibited by depleting mitochondrial calcium. Saponin-permeabilized cells accumulated Ca2+ in an ATP-dependent manner into a nonmitochondrial pool, which exhibited a high affinity for Ca2+ and a small capacity, and into a mitochondrial pool which had a lower affinity for Ca2+ but was not saturated under the conditions tested. Permeabilized cells buffered free Ca2+ to 129 +/- 9.2 nM when incubated in a cytosol-like solution initially containing 200 to 1000 nM free Ca2+. InsP3, but not other inositol sugars, released calcium from the nonmitochondrial pool(s); half-maximal effect occurred at approximately 1 microM InsP3. Ca2+ release was followed by reuptake into a nonmitochondrial pool(s). These data suggest that InsP3 serves as an intracellular mediator (or second messenger) of TRH action to mobilize calcium from a nonmitochondrial pool(s) leading to an elevation of [Ca2+]i and then to prolactin secretion.  相似文献   

17.
The effects of heparin on intracellular calcium release in monolayers of permeabilised cultured rabbit smooth muscle cells were determined using 45Ca effluxes. Low molecular weight heparin inhibited inositol 1,4,5-trisphosphate (InsP3) induced Ca2+ release (IC50 = 0.8 microgram/ml), but not guanosine 5'-O-(3-thio triphosphate) (GTP gamma S) stimulated Ca2+ release. Only a small inhibition was noted with high molecular weight heparin and de-N-sulphated heparin, although chondroitin sulphate A potently inhibited the InsP3 response. These results indicate the competitive and specific nature of the heparin effect and give information about the structure of the InsP3 site.  相似文献   

18.
Hydrolysis of the phospholipid phosphatidylinositol 4,5-bisphosphate is thought to be intimately involved in agonist-induced changes in intracellular Ca2+ levels. Recently we have shown that human preovulatory follicular fluid, which induces exocytosis in human sperm, can stimulate a rapid, transient increase in sperm cytosolic [Ca2+] [Thomas & Meizel (1988) Gamete Res. 20, 397-411]. We report here that both a Sephadex G-75 column fraction, derived from follicular fluid, and progesterone (a component of both the G-75 fraction and whole follicular fluid) stimulate rapid hydrolysis of PtdIns(4,5)P2 and PtdIns4P in human sperm. We also report that progesterone stimulates a rapid influx of Ca2+ in human sperm. Human spermatozoa were labelled for 24 h with myo-[3H]inositol and then treated with either the G-75 fraction or progesterone. A 30-65% loss of label was detected in PtdIns(4,5)P2 and PtdIns4P within 15 s of stimulus addition; no changes were observed in PtdIns during 2 min of treatment. The loss of label from both lipids was accompanied by an increase in water-soluble inositol phosphates. Production of both InsP3 and InsP2 was seen within 10 s; however, InsP3 was rapidly removed and had reached control levels by 1 min. Similarly, formation of InsP2 reached a peak by 30 s and then began a decline accompanied by a corresponding increase in InsP. No increases in InsP4 were seen in sperm treated in this fashion. Stimulated hydrolysis of the phosphoinositides and release of inositol phosphates were both blocked by the Ca2+ antagonist La3+. Likewise, the progesterone-induced increase in intracellular Ca2+ was inhibited by La3+, and phosphoinositide hydrolysis stimulated by this hormone was dependent upon the presence of extracellular Ca2+.  相似文献   

19.
Recent studies indicate novel roles for the ubiquitous ion pump, Na,K-ATPase, in addition to its function as a key regulator of intracellular sodium and potassium concentration. We have previously demonstrated that ouabain, the endogenous ligand of Na,K-ATPase, can trigger intracellular Ca2+ oscillations, a versatile intracellular signal controlling a diverse range of cellular processes. Here we report that Na,K-ATPase and inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) form a cell signaling microdomain that, in the presence of ouabain, generates slow Ca2+ oscillations in renal cells. Using fluorescent resonance energy transfer (FRET) measurements, we detected a close spatial proximity between Na,K-ATPase and InsP3R. Ouabain significantly enhanced FRET between Na,K-ATPase and InsP3R. The FRET effect and ouabain-induced Ca2+ oscillations were not observed following disruption of the actin cytoskeleton. Partial truncation of the NH2 terminus of Na,K-ATPase catalytic alpha1-subunit abolished Ca2+ oscillations and downstream activation of NF-kappaB. Ouabain-induced Ca2+ oscillations occurred in cells expressing an InsP3 sponge and were hence independent of InsP3 generation. Thus, we present a novel principle for a cell signaling microdomain where an ion pump serves as a receptor.  相似文献   

20.
Chromogranins A and B are high capacity, low affinity calcium (Ca(2+)) storage proteins that bind to the inositol 1,4,5-trisphosphate-gated receptor (InsP(3) R). Although most commonly associated with secretory granules of neuroendocrine cells, chromogranins have also been found in the lumen of the endoplasmic reticulum (ER) of many cell types. To investigate the functional consequences of the interaction between the InsP(3) R and the chromogranins, we disrupted the interaction between the two proteins by adding a chromogranin fragment, which competed with chromogranin for its binding site on the InsP(3)R. Responses were monitored at the single channel level and in intact cells. When using InsP(3) R type I incorporated into planar lipid bilayers and activated by cytoplasmic InsP(3) and luminal chromogranin, the addition of the fragment reversed the enhancing effect of chromogranin. Moreover, the expression of the fragment in the ER of neuronally differentiated PC12 cells attenuated agonist-induced intracellular Ca(2+) signaling. These results show that the InsP(3)R/chromogranin interaction amplifies Ca(2+) release from the ER and that chromogranin is an essential component of this intracellular channel complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号