首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dihydroceramide, ceramide, sphingomyelin, lactosylceramide, and ganglioside species of A2780 human ovarian carcinoma cells treated with the synthetic retinoids N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) in culture were characterized by ESI-MS. We characterized 32 species of ceramide and dihydroceramide, 15 of sphingomyelin, 12 of lactosylceramide, 9 of ganglioside GM2, and 6 of ganglioside GM3 differing for the long-chain base and fatty acid structures. Our results indicated that treatment with both 4-HPR and 4-oxo-4-HPR led to a marked increase in dihydroceramide species, while only 4-oxo-4-HPR led to a minor increase of ceramide species. Dihydroceramides generated in A2780 cells in response to 4-HPR or 4-oxo-4-HPR differed for their fatty acid content, suggesting that the two drugs differentially affect the early steps of sphingolipid synthesis. Dihydroceramides produced upon treatments with the drugs were further used for the synthesis of complex dihydrosphingolipids, whose levels dramatically increased in drug-treated cells.  相似文献   

2.
Lag1 (longevity assurance gene 1) homologues, a family of transmembrane proteins found in all eukaryotes, have been shown to be necessary for (dihydro)ceramide synthesis. All Lag1 homologues contain a highly conserved stretch of 52 amino acids known as the Lag1p motif. However, the functional significance of the conserved Lag1p motif for (dihydro)ceramide synthesis is currently unknown. In this work, we have investigated the function of the motif by introducing eight point mutations in the Lag1p motif of the mouse LASS1 (longevity assurance homologue 1 of yeast Lag1). The (dihydro)ceramide synthase activity of the mutants was tested using microsomes in HeLa cells and in vitro. Six of the mutations resulted in loss of activity in cells and in vitro. In addition, our results showed that C18:0 fatty acid CoA (but not cis-C18:1 fatty acid CoAs) are substrates for LASS1 and that LASS1 in HeLa cells is sensitive to fumonisin B1, an in vitro inhibitor of (dihydro)ceramide synthase. Moreover, we mutated the Lag1p motif of another Lag homologue, human LASS5. The amino acid substitutions in the human LASS5 were the same as in mouse LASS1, and had the same effect on the in vitro activity of LASS5, suggesting the Lag1p motif appears to be essential for the enzyme activity of all Lag1 homologues.  相似文献   

3.
We demonstrated recently (Riebeling, C., Allegood, J.C., Wang, E., Merrill, A. H. Jr., and Futerman, A. H. (2003) J. Biol. Chem. 278, 43452-43459) that upon over-expression in human embryonic kidney cells, longevity assurance gene homolog 5 (LASS5, previously named TRH4) elevates the synthesis of (dihydro)ceramides selectively enriched in palmitic acid. To determine whether LASS5 is a bona fide dihydroceramide synthase or, alternatively, whether it modifies an endogenous dihydroceramide synthase, we over-expressed LASS5 with a hemagglutinin (HA) tag at the C terminus, solubilized it using digitonin, and purified it by immunoprecipitation. Solubilized LASS5-HA displays the same fatty acid selectivity as the membrane-bound enzyme. After elution from agarose beads, only one band could be detected by SDS-PAGE, and its identity was confirmed to be LASS5 by mass spectrometry. Dihydroceramide synthase activity of the eluted LASS5-HA protein was totally dependent on exogenously added phospholipids. Moreover, eluted LASS5-HA was highly selective toward palmitoyl-CoA as acyl donor and was inhibited by the (dihydro)ceramide synthase inhibitor, fumonisin B1. This study identifies LASS5 as a genuine dihydroceramide synthase and demonstrates that mammalian dihydroceramide synthases do not require additional subunits for their activity.  相似文献   

4.
Ceramide is a key bioactive mediator that inhibits surfactant phosphatidylcholine (PtdCho) synthesis in lung epithelia. Ceramide availability is governed by sphingomyelin (SM) hydrolysis, but less is known regarding its de novo synthesis. In this study, we observed that ceramide synthesis within murine lung epithelia was associated with high-level ceramide synthase (dihydroceramide synthase) activity. Longevity assurance homolog 5 (LASS5) was the predominant ceramide synthase isoform detected in lung epithelia, whereas relatively lower level expression was detected for the other five mammalian homologs. Pulmonary LASS5 was developmentally regulated, but its expression was spatially and gender nonspecific. Exogenously expressed LASS5 in lung epithelia was membrane-associated, triggering increased ceramide synthesis, whereas knockdown studies using fumonisin B1 or LASS5 small, interfering RNA reduced ceramide synthase activity by 78% or 45%, respectively. Overexpression of LASS5 also reduced PtdCho synthesis, but maximal inhibition was achieved when LASS5 was coexpressed with a plasmid encoding a neutral sphingomyelinase involved in SM hydrolysis. These results demonstrate that LASS5 is the major ceramide synthase gene product involved in sphingolipid production that may also regulate PtdCho metabolism in pulmonary epithelia.  相似文献   

5.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders. CLN8 deficiency causes a subtype of NCL, referred to as CLN8 disease. CLN8 is an ER resident protein with unknown function; however, a role in ceramide metabolism has been suggested. In this report, we identified PP2A and its biological inhibitor I2PP2A as interacting proteins of CLN8. PP2A is one of the major serine/threonine phosphatases in cells and governs a wide range of signaling pathways by dephosphorylating critical signaling molecules. We showed that the phosphorylation levels of several substrates of PP2A, namely Akt, S6 kinase, and GSK3β, were decreased in CLN8 disease patient fibroblasts. This reduction can be reversed by inhibiting PP2A phosphatase activity with cantharidin , suggesting a higher PP2A activity in CLN8-deficient cells. Since ceramides are known to bind and influence the activity of PP2A and I2PP2A, we further examined whether ceramide levels in the CLN8-deficient cells were changed. Interestingly, the ceramide levels were reduced by 60% in CLN8 disease patient cells compared to controls. Furthermore, we observed that the conversion of ER-localized NBD-C6-ceramide to glucosylceramide and sphingomyelin in the Golgi apparatus was not affected in CLN8-deficient cells, indicating transport of ceramides from ER to the Golgi apparatus was normal. A model of how CLN8 along with ceramides affects I2PP2A and PP2A binding and activities is proposed.  相似文献   

6.
Ceramide signaling in fenretinide-induced endothelial cell apoptosis   总被引:6,自引:0,他引:6  
Stress stimuli can mediate apoptosis by generation of the lipid second messenger, ceramide. Herein we investigate the molecular mechanism of ceramide signaling in endothelial apoptosis induced by fenretinide (N-(4-hydroxyphenyl)retinamide (4-HPR)). 4-HPR, a synthetic derivative of retinoic acid that induces ceramide in tumor cell lines, has been shown to have antiangiogenic effects, but the molecular mechanism of these is largely unknown. We report that 4-HPR was cytotoxic to endothelial cells (50% cytotoxicity at 2.4 microm, 90% at 5.36 microm) and induced a caspase-dependent endothelial apoptosis. 4-HPR (5 microm) increased ceramide levels in endothelial cells 5.3-fold, and the increase in ceramide was required to achieve the apoptotic effect of 4-HPR. The 4-HPR-induced increase in ceramide was suppressed by inhibitors of ceramide synthesis, fumonisin B(1), myriocin, and l-cycloserine, and 4-HPR transiently activated serine palmitoyltransferase, demonstrating that 4-HPR induced de novo ceramide synthesis. Sphingomyelin levels were not altered by 4-HPR, and desipramine had no effect on ceramide level, suggesting that sphingomyelinase did not contribute to the 4-HPR-induced ceramide increase. Finally, the pancaspase inhibitor, t-butyloxycarbonyl-aspartyl[O-methyl]-fluoromethyl ketone, suppressed 4-HPR-mediated apoptosis but not ceramide accumulation, suggesting that ceramide is upstream of caspases. Our results provide the first evidence that increased ceramide biosynthesis is required for 4-HPR-induced endothelial apoptosis and present a molecular mechanism for its antiangiogenic effects.  相似文献   

7.
The neuronal ceroid lipofuscinoses (NCLs) are a group of neuronal degenerative diseases that primarily affect children. Previously we hypothesized that the similarity of the phenotypes among the variant subtypes of NCL suggests that the NCLs share a common metabolic functional pathway. To test our hypothesis, we have studied several candidate proteins identified using a proteomic approach. We analyzed their differential expression and cataloged their functions and involved pathways. Forty protein peaks, differentially expressed in NCLs, were selected from two-dimensional protein fragmentation (PF2D) maps and twenty-four proteins were identified by MALDI-TOF-MS or LC-ESI-MS/MS. Six proteins were verified by further Western blotting. Our results showed that annexin A1, annexin A2, and vimentin were significantly down-regulated in NCL1, NCL2, NCL3, and NCL8 cells; galectin-1 was down-regulated in NCL1, NCL3, and NCL8 but up-regulated in NCL2 cells; and isoform 5 of caldesmon was up-regulated in all NCL cell types. The histone 2B was down-regulated in NCL3. Functional analysis showed that the differentially expressed proteins identified by PF2D could be grouped into categories of intermediate filaments, cell motility, apoptosis, cytoskeleton, membrane trafficking, calcium binding, nucleosome assembly, pigment granule and cell development. Immunocytochemistry revealed nuclear translocalization of annexin A1 in CLN2-deficient fibroblasts and abnormal distribution of L-caldesmon in cultured CLN1, CLN2, CLN3 and CLN8-deficient fibroblasts. Finding differentially expressed proteins in variant NCLs, which showed disturbances of cytoskeleton, RAGE-dependent cellular pathways and decreased glycolysis provides evidence supporting our hypothesis. These findings may contribute to the discovery of molecular biomarkers and may help further elucidate the pathogenic mechanisms underlying the NCLs.  相似文献   

8.
Yu Y  Lu H  Pan H  Ma JH  Ding ZJ  Li YY 《Microbiological research》2006,161(3):203-211
LAG1 contributes to the substrate specificity and catalytic activity of ceramide synthases in Saccharomyces cerevisiae. Double deletion of LAG1 and its yeast homologue LAC1 results in the slow growth defect of the cell under certain genetic backgrounds. LASS2, containing the conserved TLC domain and the specific HOX domain, is a human homologue of Lag1p. In this study, shuffling tests and tetrad analyses were carried out to examine the complementation between Lag1p and LASS2 or its fragment containing the TLC domain but lacking the HOX domain (LASS2DeltaHOX). Controlled by either the natural weak LAG1 promoter or the strong yeast ADH1 promoter, LASS2 and LASS2DeltaHOX could not rescue the slow growth defect of double mutant. The results indicated that LASS2 or LASS2DeltaHOX could not functionally complement Lag1p.  相似文献   

9.
The dihydroceramide desaturase (DES) enzyme is responsible for inserting the 4,5-trans-double bond to the sphingolipid backbone of dihydroceramide. We previously demonstrated that fenretinide (4-HPR) inhibited DES activity in SMS-KCNR neuroblastoma cells. In this study, we investigated whether 4-HPR acted directly on the enzyme in vitro. N-C8:0-d-erythro-dihydroceramide (C(8)-dhCer) was used as a substrate to study the conversion of dihydroceramide into ceramide in vitro using rat liver microsomes, and the formation of tritiated water after the addition of the tritiated substrate was detected and used to measure DES activity. NADH served as a cofactor. The apparent K(m) for C(8)-dhCer and NADH were 1.92 ± 0.36 μm and 43.4 ± 6.47 μm, respectively; and the V(max) was 3.16 ± 0.24 and 4.11 ± 0.18 nmol/min/g protein. Next, the effects of 4-HPR and its metabolites on DES activity were investigated. 4-HPR was found to inhibit DES in a dose-dependent manner. At 20 min, the inhibition was competitive; however, longer incubation times demonstrated the inhibition to be irreversible. Among the major metabolites of 4-HPR, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) showed the highest inhibitory effect with substrate concentration of 0.5 μm, with an IC(50) of 1.68 μm as compared with an IC(50) of 2.32 μm for 4-HPR. N-(4-Methoxyphenyl)retinamide (4-MPR) and 4-Oxo-N-(4-methoxyphenyl)retinamide (4-oxo-4-MPR) had minimal effects on DES activity. A known competitive inhibitor of DES, C(8)-cyclopropenylceramide was used as a positive control. These studies define for the first time a direct in vitro target for 4-HPR and suggest that inhibitors of DES may be used as therapeutic interventions to regulate ceramide desaturation and consequent function.  相似文献   

10.
4-(Hydroxyphenyl)retinamide (4-HPR) is a synthetic retinoid with a strong apoptotic effect towards different cancer cell lines in vitro, and it is currently tested in clinical trials. Increases of reactive oxygen species (ROS) and modulation of endogenous sphingolipid levels are well-described events observed upon 4-HPR treatment, but there is still a lack of understanding of their relationship and their contribution to cell death. LC-MS analysis of sphingolipids revealed that in human leukemia CCRF-CEM and Jurkat cells, 4-HPR induced dihydroceramide but not ceramide accumulation even at sublethal concentrations. Myriocin prevented the 4-HPR-induced dihydroceramide accumulation, but it did not prevent the loss of viability and increase of intracellular ROS production. On the other hand, ascorbic acid, Trolox, and vitamin E reversed 4-HPR effects on cell death but not dihydroceramide accumulation. NDGA, described as a lipoxygenase inhibitor, exerted a significantly higher antioxidant activity than vitamin E and abrogated 4-HPR-mediated ROS. It did not however rescue cellular viability. Taken together, this study demonstrates that early changes observed upon 4-HPR treatment, i.e., sphingolipid modulation and ROS production, are mechanistically independent events. Furthermore, the results indicate that 4-HPR-driven cell death may occur even in the absence of dihydroceramide or ROS accumulation. These observations should be taken into account for an improved design of drug combinations.  相似文献   

11.
Lag1p and Lac1p are two highly homologous membrane proteins of the endoplasmic reticulum. lag1delta lac1delta double mutants in Saccharomyces cerevisiae lack an acyl-CoA-dependent ceramide synthase and are either very sick or nonviable, depending on the genetic background. LAG1 and LAC1 are members of a large eukaryotic gene family that shares the Lag1 motif, and some members of this family additionally contain a DNA-binding HOX homeodomain. Here we show that several human LAG1 homologues can rescue the viability of lag1delta lac1delta yeast cells and restore acyl-CoA-dependent ceramide and sphingolipid biosynthesis. When tested in a microsomal assay, Lac1p and Lag1p had a strong preference for C26:0-CoA over C24:0-CoA, C20-CoA, and C16-CoA, whereas some human homologues preferred C24:0-CoA and CoA derivatives with shorter fatty acids. This suggests that LAG1 proteins are related to substrate recognition and to the catalytic activity of ceramide synthase enzymes. CLN8, another human LAG1 homologue implicated in ceroid lipofuscinosis, could not restore viability to lag1delta lac1delta yeast mutants.  相似文献   

12.
The de novo pathway of sphingolipid synthesis has been identified recently as a novel means of generating ceramide during apoptosis. Furthermore, it has been suggested that the activation of dihydroceramide synthase is responsible for increased ceramide production through this pathway. In this study, accumulation of ceramide mass in Molt-4 human leukemia cells by the chemotherapy agent etoposide was found to occur primarily due to activation of the de novo pathway. However, when the cells were labeled with a substrate for dihydroceramide synthase in the presence of etoposide, there was no corresponding increase in labeled ceramide. Further investigation using a labeled substrate for serine palmitoyltransferase, the rate-limiting enzyme in the pathway, resulted in an accumulation of label in ceramide upon etoposide treatment. This result suggests that the activation of serine palmitoyltransferase is the event responsible for increased ceramide generation during de novo synthesis initiated by etoposide. Importantly, the ceramide generated from de novo synthesis appears to have a distinct function from that induced by sphingomyelinase action in that it is not involved in caspase-induced poly (ADP-ribose)polymerase proteolysis but does play a role in disrupting membrane integrity in this model system. These results implicate serine palmitoyltransferase as the enzyme controlling de novo ceramide synthesis during apoptosis and begin to define a unique function of ceramide generated from this pathway.  相似文献   

13.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   

14.
This study was designed to analyze the effect of myristic acid on ceramide synthesis and its related lipoapoptosis pathway. It was previously observed that myristic acid binds dihydroceramide Δ4-desaturase 1 (DES1) through N-myristoylation and activates this enzyme involved in the final de novo ceramide biosynthesis step. In the present study, we show first by immunofluorescence microscopy and subcellular fractionation that DES1 myristoylation targets part of the recombinant protein to the mitochondria in COS-7 cells. In addition, native dihydroceramide Δ4-desaturase activity was found in both the endoplasmic reticulum and mitochondria in rat hepatocytes. Dihydroceramide conversion to ceramide was increased in COS-7 cells expressing DES1 and incubated with myristic acid. The expression of the wild-type myristoylable DES1-Gly alone, but not the expression of the unmyristoylable mutant DES1-Ala, induced apoptosis of COS-7 cells. Finally, myristic acid alone also increased the production of cellular ceramide and had an apoptotic effect. This effect was potentiated on caspase activity when the myristoylable form of DES1 was expressed. Therefore, these results suggest that the myristoylation of DES1 can target the enzyme to the mitochondria leading to an increase in ceramide levels which in turn contributes to partially explain the apoptosis effect of myristic acid in COS-7 cells.  相似文献   

15.
Lag1p and Lac1p are two homologous transmembrane proteins of the endoplasmic reticulum in Saccharomyces cerevisiae. Homologous genes have been found in a wide variety of eukaryotes. In yeast, both genes, LAC1 and LAG1, are required for efficient endoplasmic reticulum-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. In this study, we show that lag1 Delta lac1 Delta cells have reduced sphingolipid levels due to a block of the fumonisin B1-sensitive and acyl-CoA-dependent ceramide synthase reaction. The sphingolipid synthesis defect in lag1 Delta lac1 Delta cells can be partially corrected by overexpression of YPC1 or YDC1, encoding ceramidases that have been reported to have acyl-CoA-independent ceramide synthesis activity. Quadruple mutant cells (lag1 Delta lac1 Delta ypc1 Delta ydc1 Delta) do not make any sphingolipids, but are still viable probably because they produce novel lipids. Moreover, lag1 Delta lac1 Delta cells are resistant to aureobasidin A, an inhibitor of the inositolphosphorylceramide synthase, suggesting that aureobasidin A may be toxic because it leads to increased ceramide levels. Based on these data, LAG1 and LAC1 are the first genes to be identified that are required for the fumonisin B1-sensitive and acyl-CoA-dependent ceramide synthase reaction.  相似文献   

16.
Resistance to chemotherapeutic drugs often limits their clinical efficacy. Previous studies have implicated the bioactive sphingolipid sphingosine-1-phosphate (S-1-P) in regulating sensitivity to cisplatin [cis-diamminedichloroplatinum(II)] and showed that modulating the S-1-P lyase can alter cisplatin sensitivity. Here, we show that the members of the sphingosine kinase (SphK1 and SphK2) and dihydroceramide synthase (LASS1/CerS1, LASS4/CerS4, and LASS5/CerS5) enzyme families each have a unique role in regulating sensitivity to cisplatin and other drugs. Thus, expression of SphK1 decreases sensitivity to cisplatin, carboplatin, doxorubicin, and vincristine, whereas expression of SphK2 increases sensitivity. Expression of LASS1/CerS1 increases the sensitivity to all the drugs tested, whereas LASS5/CerS5 only increases sensitivity to doxorubicin and vincristine. LASS4/CerS4 expression has no effect on the sensitivity to any drug tested. Reflecting this, we show that the activation of the p38 mitogen-activated protein (MAP) kinase is increased only by LASS1/CerS1, and not by LASS4/CerS4 or LASS5/CerS5. Cisplatin was shown to cause a specific translocation of LASS1/CerS1, but not LASS4/CerS4 or LASS5/CerS5, from the endoplasmic reticulum (ER) to the Golgi apparatus. Supporting the hypothesis that this translocation is mechanistically involved in the response to cisplatin, we showed that expression of SphK1, but not SphK2, abrogates both the increased cisplatin sensitivity in cells stably expressing LASS1/CerS and the translocation of the LASS1/CerS1. The data suggest that the enzymes of the sphingolipid metabolic pathway can be manipulated to improve sensitivity to the widely used drug cisplatin.  相似文献   

17.
Apoptosis, Golgi fragmentation and elevated ceramide levels occur in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) neurons, lymphoblasts and fibroblasts. Our purpose was to examine whether apoptosis is the mechanism of cell death in JNCL. This was tested by analyzing caspase-dependent/independent pathways and autophagy, and caspase effects on ceramide and Golgi fragmentation. zVAD prevented caspase activation, but not all cell death. Inhibiting caspase-8 suppressed caspases more than inhibition of any other caspase. Inhibiting caspase-8/6 was synergistic. zVAD suppressed autophagy. 3-methyladenine suppressed caspase activation less than zVAD did. Blocking autophagy/caspase-8/or-6 was synergistic. Blocking autophagy/caspase-3/or-9 was not. Inhibiting caspase-9/3 suppressed autophagy. Golgi fragmentation was suppressed by zVAD, and blocked by CLN3. CLN3, not zVAD, prevented ceramide elevation. In conclusion: caspase-dependent/independent apoptosis and autophagy occur caspase-dependent pathways initiate autophagy Golgi fragmentation results from apoptosis ceramide elevation is independent of caspases, and CLN3 blocks all cell death, prevents Golgi fragmentation and elevation of ceramide in JNCL.  相似文献   

18.
Ceramide functions as an important second messenger in apoptosis signaling pathways. In this report, we show that treatment of NT-2 neuronal precursor cells with hypoxia/reoxygenation (H/R) resulted in ceramide up-regulation. This elevation in ceramide was primarily due to the actions of acid sphingomyelinase and ceramide synthase LASS 5, demonstrating the action of the salvage pathway. Hypoxia/reoxygenation treatment led to Bax translocation from the cytoplasm to mitochondria and cytochrome c release from mitochondria. Down-regulation of either acid sphingomyelinase or LASS 5-attenuated ceramide accumulation and H/R-induced Bax translocation to mitochondria. Overall, we have demonstrated that ceramide up-regulation following H/R is pertinent to Bax activation to promote cell death.  相似文献   

19.
TRAM,LAG1 and CLN8: members of a novel family of lipid-sensing domains?   总被引:7,自引:0,他引:7  
A family of membrane-associated proteins related to yeast Lag1p and mammalian TRAM has been identified. The family includes the protein product of CLN8, a gene mutated in progressive epilepsy with mental retardation. Mouse CLN8 is also mutated in the mnd/mnd mouse, a model for neuronal ceroid lipofuscinoses. The identification of these homologues has potential implications for our understanding of ceramide synthesis, lipid regulation and protein translocation in the endoplasmic reticulum.  相似文献   

20.
We have previously reported that, in leukemia cells, the cytotoxicity of the anticancer agent N-(4-hydroxyphenyl)retinamide (4-HPR) is mediated by mitochondria-derived reactive oxygen species (ROS) and cardiolipin peroxidation. Here, we have analyzed at greater depth the 4-HPR-triggered molecular events, demonstrating that 4-HPR induces an early (15 min) increase in ceramide levels by sphingomyelin hydrolysis and later (from 1 h) by de novo synthesis. Using specific inhibitors of both pathways, we demonstrate that ceramide accumulation is responsible for early ROS generation, which act as apoptotic signalling intermediates leading to conformational activation of Bak and Bax, loss of mitochondrial membrane potential (ΔΨm), mitochondrial membrane permeabilization (MMP) and cell death. Enforced expression of Bcl-2 has no effect on 4-HPR-induced oxidative stress, but notably prevents mitochondrial alterations and apoptosis, indicating that Bcl-2 functions by regulating events downstream of ROS generation. In conclusion, our study delineates for the fist time the sequence and timing of the principal events induced by 4-HPR in leukemia cells and points to the potential use of modulators of ceramide metabolism as enhancers in 4-HPR-based therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号