首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Upon ligand binding, the alpha6beta4 integrin becomes phosphorylated on tyrosine residues and combines sequentially with the adaptor molecules Shc and Grb2, linking to the ras pathway, and with cytoskeletal elements of hemidesmosomes. Since alpha6beta4 is expressed in a variety of tissues regulated by the EGF receptor (EGFR), we have examined the effect of EGF on the cytoskeletal and signaling functions of alpha6beta4. Experiments of immunoblotting with anti-phosphotyrosine antibodies and immunoprecipitation followed by phosphoamino acid analysis and phosphopeptide mapping showed that activation of the EGFR causes phosphorylation of the beta4 subunit at multiple tyrosine residues, and this event requires ligation of the integrin by laminins or specific antibodies. Immunoprecipitation experiments indicated that stimulation with EGF does not result in association of alpha6beta4 with Shc. In contrast, EGF can partially suppress the recruitment of Shc to ligated alpha6beta4. Immunofluorescent analysis revealed that EGF treatment does not induce increased assembly of hemidesmosomes, but instead causes a deterioration of these adhesive structures. Finally, Boyden chamber assays indicated that exposure to EGF results in upregulation of alpha6beta4-mediated cell migration toward laminins. We conclude that EGF-dependent signals suppress the association of activated alpha6beta4 with both signaling and cytoskeletal molecules, but upregulate alpha6beta4-dependent cell migration. The changes in alpha6beta4 function induced by EGF may play a role during wound healing and tumorigenesis.  相似文献   

2.
3.
Ligation of the alpha(6)beta(4) integrin induces tyrosine phosphorylation of the beta(4) cytoplasmic domain, followed by recruitment of the adaptor protein Shc and activation of mitogen-activated protein kinase cascades. We have used Far Western analysis and phosphopeptide competition assays to map the sites in the cytoplasmic domain of beta(4) that are required for interaction with Shc. Our results indicate that, upon phosphorylation, Tyr(1440), or secondarily Tyr(1422), interacts with the SH2 domain of Shc, whereas Tyr(1526), or secondarily Tyr(1642), interacts with its phosphotyrosine binding (PTB) domain. An inactivating mutation in the PTB domain of Shc, but not one in its SH2 domain, suppresses the activation of Shc by alpha(6)beta(4). In addition, mutation of beta(4) Tyr(1526), which binds to the PTB domain of Shc, but not of Tyr(1422) and Tyr(1440), which interact with its SH2 domain, abolishes the activation of ERK by alpha(6)beta(4). Phenylalanine substitution of the beta(4) tyrosines able to interact with the SH2 or PTB domain of Shc does not affect incorporation of alpha(6)beta(4) in the hemidesmosomes of 804G cells. Exposure to the tyrosine phosphatase inhibitor orthovanadate increases tyrosine phosphorylation of beta4 and disrupts the hemidesmosomes of 804G cells expressing recombinant wild type beta(4). This treatment, however, exerts a decreasing degree of inhibition on the hemidesmosomes of cells expressing versions of beta(4) containing phenylalanine substitutions at Tyr(1422) and Tyr(1440), at Tyr(1526) and Tyr(1642), or at all four tyrosine phosphorylation sites. These results suggest that beta(4) Tyr(1526) interacts in a phosphorylation-dependent manner with the PTB domain of Shc. This event is required for subsequent tyrosine phosphorylation of Shc and signaling to ERK but not formation of hemidesmosomes.  相似文献   

4.
The cytoplasmic domain of the integrin beta4 subunit mediates both association with the hemidesmosomal cytoskeleton and recruitment of the signaling adaptor protein Shc. To examine the significance of these interactions during development, we have generated mice carrying a targeted deletion of the beta4 cytoplasmic domain. Analysis of homozygous mutant mice indicates that the tail-less alpha6beta4 binds efficiently to laminin 5, but is unable to integrate with the cytoskeleton. Accordingly, these mice display extensive epidermal detachment at birth and die immmediately thereafter from a syndrome resembling the human disease junctional epidermolysis bullosa with pyloric atresia (PA-JEB). In addition, we find a significant proliferative defect. Specifically, the number of precursor cells in the intestinal epithelium, which remains adherent to the basement membrane, and in intact areas of the skin is reduced, and post-mitotic enterocytes display increased levels of the cyclin-dependent kinase inhibitor p27(Kip). These findings indicate that the interactions mediated by the beta4 tail are crucial for stable adhesion of stratified epithelia to the basement membrane and for proper cell-cycle control in the proliferative compartments of both stratified and simple epithelia.  相似文献   

5.
Outside-in signaling mediated by the integrin alpha(IIb)beta(3) (GPIIbIIIa) is critical to platelet function and has been shown to involve the phosphorylation of tyrosine residues on the cytoplasmic tail of beta(3). To identify proteins that bind directly to phosphorylated beta(3), we utilized an affinity column consisting of a peptide modeled on the tyrosine-phosphorylated cytoplasmic domain of beta(3). Tandem mass spectrometric sequencing and immunoblotting demonstrated that Shc was the primary protein binding to phosphorylated beta(3). To determine the involvement of Shc in outside-in alpha(IIb)beta(3) signaling, the phosphorylation of Shc during platelet aggregation was examined; transient Shc phosphorylation was observed when thrombin-stimulated platelets were allowed to aggregate or when aggregation was induced by an LIBS (ligand-induced binding site) antibody, D3. Moreover, Shc was co-immunoprecipitated with tyrosine-phosphorylated beta(3) in detergent lysates of aggregated platelets. Using purified, recombinant protein, it was found that the binding of Shc to monophosphorylated (C-terminal tyrosine) and diphosphorylated beta(3) peptides was direct, demonstrating Shc recognition motifs on phospho-beta(3). Aggregation-induced Shc phosphorylation was also observed to be robust in platelets from wild-type mice, but not in those from mice expressing (Y747F,Y759F) beta(3), which are defective in outside-in alpha(IIb)beta(3) signaling. Thus, Shc is the primary downstream signaling partner of beta(3) in its tyrosine phosphorylation outside-in signaling pathway.  相似文献   

6.
We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the alpha6beta4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express alpha6beta4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the alpha6beta4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis ( approximately 1 ng/ml), the alpha6beta4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained alpha6beta4 in association with F-actin. Importantly, we demonstrate that this mobilization of alpha6beta4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-alpha and that it is associated with the phosphorylation of the beta4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin-rich cell protrusions that mediate alpha6beta4-dependent cell movement but also the disruption of alpha6beta4-containing hemidesmosomes by protein kinase C.  相似文献   

7.
L Trusolino  A Bertotti  P M Comoglio 《Cell》2001,107(5):643-654
alpha6beta4 integrin and the Met receptor for HGF have been shown independently to promote invasive growth. We demonstrate here that Met selectively associates with alpha6beta4. In carcinoma cells expressing Met alone, HGF does not exert significant biological effects. Ectopic expression of alpha6beta4 restores HGF-regulated processes. Following Met activation, alpha6beta4 is tyrosine phosphorylated and combines with Shc and PI3K, generating an additional signaling platform that potentiates HGF-triggered activation of Ras- and PI3K-dependent pathways. In the presence of an alpha6beta4 mutant defective for Shc recruitment, Met cannot sustain HGF-mediated responses. Surprisingly, a truncated beta4 unable to bind laminins retains the activity of wild-type alpha6beta4. Such findings invoke an unexpected role for alpha6beta4 in cancer invasion as a functional amplifier of biochemical outputs rather than a mechanical adhesive device.  相似文献   

8.
The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have recently been elucidated biochemically and genetically. The present study was undertaken to determine whether common signaling components are used by these two distinct classes of receptors. Here we report that the adaptor protein Shc, is phosphorylated on tyrosine residues following stimulation of the thrombin receptor in growth-responsive CCL39 fibroblasts. Shc phosphorylation by thrombin or the thrombin receptor agonist peptide is maximal by 15 min and persists for > or = 2 h. Following thrombin stimulation, phosphorylated Shc is recruited to Grb2 complexes. One or more pertussis toxin-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4-beta-phorbol-12,13-dibutyrate has no effect. Rather, thrombin-induced Shc phosphorylation is enhanced in cells depleted of phorbol ester-sensitive protein kinase C isoforms. Expression of mutant Shc proteins defective in Grb2 binding displays a dominant-negative effect on thrombin-stimulated p44 MAP kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

9.
The epidermal growth factor receptor, EGFR, has been implicated in cell transformation in both mammalian and avian species. The v-ErbB oncoprotein is an oncogenic form of the chicken EGFR. The tyrosine kinase activity of this oncoprotein is required for transformation, but no transformation-specific cellular substrates have been described to date. Recently activation of the ras signal transduction pathway by the EGFR has been shown to involve the Shc and Grb2 proteins. In this communication, we demonstrate that the Shc proteins are phosphorylated on tyrosine residues and are complexed with Grb2 and the chicken EGFR following ligand activation of this receptor. In fibroblasts and erythroid cells transformed by the avian erythroblastosis virus (AEV) strains H and ES4, the Shc proteins are found to be constitutively phosphorylated on tyrosine residues. The tyrosine-phosphorylated forms of the AEV strain H v-ErbB protein are found in a complex with Shc and Grb2, but the Shc proteins do not bind to the AEV strain ES4 v-ErbB protein. Mutant forms of the v-ErbB protein (in which several of the tyrosines that become autophosphorylated have been deleted by truncation) are unable to transform erythroid cells but can still transform fibroblasts. Analysis of cells transformed by one of these mutants revealed that the truncated v-ErbB protein could no longer bind to either Shc or Grb2, but this oncoprotein still gave rise to tyrosine-phosphorylated Shc proteins that complexed with Grb2 and led to activation of mitogen-activated protein (MAP) kinase. The results suggest that stable binding of Grb2 and Shc to the v-ErbB protein is not necessary to activate this signal transduction pathway and assuming that the mutant activate MAP kinase in erythroid cells in a manner similar to that of fibroblasts, that activation of this pathway is not sufficient to transform erythroid cells.  相似文献   

10.
11.
Within each hemidesmosome, alpha6beta4 integrin plays a crucial role in hemidesmosome assembly by binding to laminin-5 in the basement membrane zone of epithelial tissue. Recent analyses have implicated "specificity-determining loops" (SDLs) in the I-like domain of beta integrin in regulating ligand binding. Here, we investigated the function of an SDL-like motif within the extracellular I-like domain of beta4 integrin. We generated point mutations within the SDL of beta4 integrin tagged with green fluorescent protein (GFP-beta4K150A and GFP-beta4Q155L). We also generated a mutation within the I-like domain of the beta4 integrin, lying outside the SDL region (GFP-beta4V284E). We transfected constructs encoding the mutated beta4 integrins and a GFP-conjugated wild type beta4 integrin (GFP-beta4WT) into 804G cells, which assemble hemidesmosomes, and human endothelial cells, which express little endogenous beta4 integrin. In transfected 804G cells, GFP-beta4WT and GFP-beta4V284E colocalize with hemidesmosome proteins, whereas hemidesmosomal components in cells expressing GFP-beta4K150A and GFP-beta4Q155L are aberrantly localized. In endothelial cells, GFP-beta4WT and mutant proteins are co-expressed at the cell surface with alpha6 integrin. When transfected endothelial cells are plated onto laminin-5 matrix, GFP-beta4WT and GFP-beta4V284E localize with laminin-5, whereas GFP-beta4K150A and GFP-beta4Q155L do not. GFP-beta4WT and GFP-beta4V284E expressed in endothelial cells associate with the adaptor protein Shc when the cells are stimulated with laminin-5. However, GFP-beta4K150A and GFP-beta4Q155L fail to associate with Shc even when laminin-5 is present, thus impacting downstream signaling. These results provide evidence that the SDL segment of the beta4 integrin subunit is required for ligand binding and is involved in outside-in signaling.  相似文献   

12.
Tyrosine phosphorylation of the beta2 subunit of clathrin adaptor complex AP-2 was detected in three types of cells treated with epidermal growth factor (EGF). The tyrosine phosphorylation was observed during recruitment of EGF receptors into coated pits at 4 degrees C and reached maximum at 37 degrees C at post-recruitment stages of endocytosis. An inhibitor of EGF receptor kinase completely abolished this phosphorylation in all cell types, whereas the inhibitor of Src family kinases partially inhibited beta2 phosphorylation in A-431 cells but not in HeLa cells. By using beta2 subunit tagged with yellow fluorescent protein that is effectively assembled into AP-2 complex, the major phosphorylation site of beta2 was mapped to Tyr-6. Analysis of cells expressing dominant-interfering mutant mu2 subunit of AP-2 suggested that beta2 phosphorylation is partially mediated by the receptor interaction with the mu2 subunit. Mutation of leucine residues 1010 and 1011 motif in the EGF receptor resulted in the severe inhibition of beta2 tyrosine phosphorylation. From these data, we propose that interactions of the EGF receptor with AP-2 mediated by the receptor 974YRAL and di-leucine motifs may contribute to beta2 tyrosine phosphorylation. Surprisingly, mutation of the Leu-1010/Leu-1011 motif resulted in impaired degradation of EGF receptors, suggesting the role of this motif in lysosomal targeting of the receptor.  相似文献   

13.
Ship1 (SH2 inositol 5-phosphatase 1) has been shown to be a target of tyrosine phosphorylation downstream of cytokine and immunoregulatory receptors. In addition to its catalytic activity on phosphatidylinositol substrates, it can serve as an adaptor protein in binding Shc and Grb2. Erythropoietin (EPO), the primary regulator of erythropoiesis, has been shown to activate the tyrosine phosphorylation of Shc, resulting in recruitment of Grb2. However, the mechanism by which the erythropoietin receptor (EPO-R) recruits Shc remains unknown. EPO activates the tyrosine phosphorylation of Ship1, resulting in the interdependent recruitment of Shc and Grb2. Ship1 is recruited to the EPO-R in an SH2-dependent manner. Utilizing a panel of EPO-R deletion and tyrosine mutants, we have discovered remarkable redundancy in Ship1 recruitment. EPO-R Tyr(401) appears to be a major site of Ship1 binding; however, Tyr(429) and Tyr(431) can also serve to recruit Ship1. In addition, we have shown that EPO stimulates the formation of a ternary complex consisting of Ship1, Shc, and Grb2. Ship1 may modulate several discrete signal transduction pathways. EPO-dependent activation of ERK1/2 and protein kinase B (PKB)/Akt was examined utilizing a panel of EPO-R deletion mutants. Activation of ERK1/2 was observed in EPO-RDelta99, which retains only the most proximal tyrosine, Tyr(343). In contrast, EPO-dependent PKB activation was observed in EPO-RDelta43, but not in EPO-RDelta99. It appears that EPO-dependent PKB activation is downstream of a region that indirectly couples to phosphatidylinositol 3-kinase.  相似文献   

14.
The Src homology 2 (SH2) and collagen domain protein Shc plays a pivotal role in signaling via tyrosine kinase receptors, including epidermal growth factor receptor (EGFR). Shc binding to phospho-tyrosine residues on activated receptors is mediated by the SH2 and phospho-tyrosine binding (PTB) domains. Subsequent phosphorylation on Tyr-317 within the Shc linker region induces Shc interactions with Grb2-Son of Sevenless that initiate Ras-mitogen-activated protein kinase signaling. We use molecular dynamics simulations of full-length Shc to examine how Tyr-317 phosphorylation controls Shc conformation and interactions with EGFR. Our simulations reveal that Shc tyrosine phosphorylation results in a significant rearrangement of the relative position of its domains, suggesting a key conformational change. Importantly, computational estimations of binding affinities show that EGFR-derived phosphotyrosyl peptides bind with significantly more strength to unphosphorylated than to phosphorylated Shc. Our results unveil what we believe is a novel structural phenomenon, i.e., tyrosine phosphorylation of Shc within its linker region regulates the binding affinity of SH2 and PTB domains for phosphorylated Shc partners, with important implications for signaling dynamics.  相似文献   

15.
Integrin alpha6beta4 signaling proceeds through Src family kinase (SFK)-mediated phosphorylation of the cytoplasmic tail of beta4, recruitment of Shc, and activation of Ras and phosphoinositide-3 kinase. Upon cessation of signaling, alpha6beta4 mediates assembly of hemidesmosomes. Here, we report that part of alpha6beta4 is incorporated in lipid rafts. Metabolic labeling in combination with mutagenesis indicates that one or more cysteine in the membrane-proximal segment of beta4 tail is palmitoylated. Mutation of these cysteines suppresses incorporation of alpha6beta4 in lipid rafts, but does not affect alpha6beta4-mediated adhesion or assembly of hemidesmosomes. The fraction of alpha6beta4 localized to rafts associates with a palmitoylated SFK, whereas the remainder does not. Ligation of palmitoylation-defective alpha6beta4 does not activate SFK signaling to extracellular signal-regulated kinase and fails to promote keratinocyte proliferation in response to EGF. Thus, compartmentalization in lipid rafts is necessary to couple the alpha6beta4 integrin to a palmitoylated SFK and promote EGF-dependent mitogenesis.  相似文献   

16.
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.  相似文献   

17.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

18.
The cytoplasmic domains of integrins play a key role in a variety of integrin-mediated events including adhesion, migration, and signaling. The molecular mechanisms that enhance integrin function are still incompletely understood. Because protein kinases are known to be involved in the signaling and the activation of integrins, the role of phosphorylation has been studied by several groups. The beta(2) leukocyte integrin subunit has previously been shown to become phosphorylated in leukocytes on cytoplasmic serine and functionally important threonine residues. We have now mapped the phosphorylated threonine residues in activated T cells. After phorbol ester stimulation, all three threonine residues (758-760) of the threonine triplet became phosphorylated but only two at a time. CD3 stimulation leads to a strong threonine phosphorylation of the beta(2) integrin, but differed from phorbol ester activation in that phosphorylation occurred only on threonine 758. The other leukocyte-specific integrin, beta(7), has also been shown to need the cytoplasmic domain and leukocyte-specific signal transduction elements for integrin activation. Cell activation with phorbol ester, and interestingly, through the TCR-CD3 complex, caused beta(7) integrin binding to VCAM-1. Additionally, cell activation led to increased phosphorylation of the beta(7) subunit, and phosphoamino acid analysis revealed that threonine residues became phosphorylated after cell activation. Sequence analysis by manual radiosequencing by Edman degradation established that threonine phosphorylation occurred in the same threonine triplet as in beta(2) phosphorylation.  相似文献   

19.
Shc family proteins serve as phosphotyrosine adaptor molecules in various receptor-mediated signaling pathways. In mammals, three distinct Shc genes have been described that encode proteins characterized by two phosphotyrosine-interaction modules, an amino-terminal phosphotyrosine binding (PTB) domain and a carboxy-terminal Src homology 2 domain. Here, we report the analysis of an uncharacterized fourth Shc family protein, ShcD/Shc4, that is expressed in adult brain and skeletal muscle. Consistent with this expression pattern, we find that ShcD can associate via its PTB domain with the phosphorylated muscle-specific kinase (MuSK) receptor tyrosine kinase and undergo tyrosine phosphorylation downstream of activated MuSK. Interestingly, additional sites of tyrosine phosphorylation, including a novel Grb2 binding site, are present on ShcD that are not found in other Shc family proteins. Activation of MuSK upon agrin binding at the neuromuscular junction (NMJ) induces clustering and tyrosine phosphorylation of acetylcholine receptors (AChRs) required for synaptic transmission. ShcD is coexpressed with MuSK in the postsynaptic region of the NMJ, and in cultured myotubes stimulated with agrin, expression of ShcD appears to be important for early tyrosine phosphorylation of the AChR. Thus, we have characterized a new member of the Shc family of docking proteins, which may mediate a specific aspect of signaling downstream of the MuSK receptor.  相似文献   

20.
We have examined the mechanism and functional significance of hemidesmosome disassembly during normal epithelial cell migration and squamous carcinoma invasion. Our findings indicate that a fraction of EGF receptor (EGF-R) combines with the hemidesmosomal integrin alpha6beta4 in both normal and neoplastic keratinocytes. Activation of the EGF-R causes tyrosine phosphorylation of the beta4 cytoplasmic domain and disruption of hemidesmosomes. The Src family kinase inhibitors PP1 and PP2 prevent tyrosine phosphorylation of beta4 and disassembly of hemidesmosomes without interfering with the activation of EGF-R. Coimmunoprecipitation experiments indicate that Fyn and, to a lesser extent, Yes combine with alpha6beta4. By contrast, Src and Lck do not associate with alpha6beta4 to a significant extent. A dominant negative form of Fyn, but not Src, prevents tyrosine phosphorylation of beta4 and disassembly of hemidesmosomes. These observations suggest that the EGF-R causes disassembly of hemidesmosomes by activating Fyn, which in turn phosphorylates the beta4 cytoplasmic domain. Neoplastic cells expressing dominant negative Fyn display increased hemidesmosomes and migrate poorly in vitro in response to EGF. Furthermore, dominant negative Fyn decreases the ability of squamous carcinoma cells to invade through Matrigel in vitro and to form lung metastases following intravenous injection in nude mice. These results suggest that disruption of hemidesmosomes mediated by Fyn is a prerequisite for normal keratinocyte migration and squamous carcinoma invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号