首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The anisotropic fracturing and differential wear properties of enamel microstructure represent factors that can obscure the predictive relationship between dental microwear and diet. To assess the impact of enamel structure on microwear, this in vitro experimental study examines the relative contributions to wear of three factors: 1) species differences in microstructure, 2) direction of shearing force relative to enamel prisms and crystallites, and 3) size of abrasive particles. Teeth of Lemur, Ovis, Homo, and Crocodylus, representing, respectively, the structural categories of prismatic patterns 1, 2, and 3 and nonprismatic enamel, were abraded by shearing forces (forces having a component directed parallel to abraded surfaces) and examined by scanning electron microscopy. Striation width increased with particle size for nonprismatic, but not for prismatic, specimens. Direction of shear relative to prism and crystallite orientation had a significant influence on striation width in only some prismatic enamels. The different responses of prismatic and nonprismatic enamels to abrasion reflect the influence of structure, but at the level of organization of crystallites rather than prisms per se. Such interactions explain in part the inability of striation width to discriminate among animals with different dietary habits. Heteroscedasticity and deviations from normality also may confound parametric analyses of microwear variables. Variation in crystallite orientation in prismatic enamels may contribute to optimal dental function through the property of differential wear in functionally distinct regions of teeth.  相似文献   

2.
The dentition of early hominids from Laetoli and Hadar provide evidence of "incisal stripping" and a shear-grinding action for C/P3 complex through microscopic examination of wear facets on dental crowns. This masticatory pattern of dental wear resembles that of Papio papio and suggests behavioral analogies between early hominids and Papio.  相似文献   

3.
Recent investigations of dental microwear have shown that such analyses may ultimately provide valuable information about the diets of fossil species. However, no background information about intraspecific variability of microwear patterns has been available until now. This study presents the results of an SEM survey of microwear patterns found on occlusal enamel of chimpanzee molars. Methods of pattern analysis are described. Selected sites on the occlusal surface included shearing, grinding, and puncture-crushing surfaces formed by both phases of the power stroke of mastication. The microwear patterns found in this sample of chimpanzees showed a high degree of regularity. However, certain parameters such as relative pit-to-striation frequencies, feature density, striation length, and pit diameter were significantly affected by facet type and molar position. Sex and age of individuals also influenced some microwear parameters, but due to the small sample size these findings are considered to be preliminary. These results show that microwear within a single species may vary because of factors that are due more to biomechanics than to diet. The study also supplies some metrical estimates of “normal” pattern variability due to functional and morphological influences. These estimates should provide a useful baseline for assessing the significance of microwear pattern differences that may be found between species of differing diets.  相似文献   

4.
The power stroke of mastication has been traditionally divided into two parts, one which precedes centric occlusion, and the other which follows it-"Phase I" and "Phase II," respectively. Recent studies of primate mastication have called into question the role of Phase II in food processing, as they have found little muscle activity or accompanying bone strain following centric occlusion. That said, many researchers today look to Phase II facets to relate diet to patterns of dental microwear. This suggests the need to reevaluate microwear patterns on Phase I facets. Here we use texture analysis to compare and contrast microwear on facets representing both phases in three primate species with differing diets (Alouatta palliata, Cebus apella, and Lophocebus albigena). Results reaffirm that microwear patterns on Phase II facets better distinguish taxa with differing diets than do those on Phase I facets. Further, differences in microwear textures between facet types for a given taxon may themselves reflect diet. Some possible explanations for differences in microwear textures between facet types are proposed.  相似文献   

5.
6.
Dental microwear researchers consider exogenous grit or dust to be an important cause of microscopic wear on primate teeth. No study to date has examined the accumulation of such abrasives on foods eaten by primates in the forest. This investigation introduces a method to collect dust at various heights in the canopy. Results from dust collection studies conducted at the primate research stations at Ketambe in Indonesia, and Hacienda La Pacifica in Costa Rica indicate that 1) grit collects throughout the canopy in both open country and tropical rain forest environments; and 2) the sizes and concentrations of dust particles accumulated over a fixed period of time differ depending on site location and season of investigation. These results may hold important implications for the interpretation of microwear on primate teeth. © 1995 Wiley-Liss, Inc.  相似文献   

7.
8.
Mastication of dietary items with different mechanical properties leaves distinctive microscopic marks on the surface of tooth enamel. The inspection of such marks (dental microwear analysis) is informative about the dietary habitus in fossil as well as in modern species. Dental microwear analysis relies on the morphology, abundance, direction, and distribution of these microscopic marks. We present a new freely available software implementation, MicroWeaR, that, compared to traditional dental microwear tools, allows more rapid, observer error free, and inexpensive quantification and classification of all the microscopic marks (also including for the first time different subtypes of scars). Classification parameters and graphical rendering of the output are fully settable by the user. MicroWeaR includes functions to (a) sample the marks, (b) classify features into categories as pits or scratches and then into their respective subcategories (large pits, coarse scratches, etc.), (c) generate an output table with summary information, and (d) obtain a visual surface‐map where marks are highlighted. We provide a tutorial to reproduce the steps required to perform microwear analysis and to test tool functionalities. Then, we present two case studies to illustrate how MicroWeaR works. The first regards a Miocene great ape obtained from through environmental scanning electron microscope, and other a Pleistocene cervid acquired by a stereomicroscope.  相似文献   

9.
This study quantitatively examined molar microwear in nine species of extant small-bodied faunivorous primates and microchiropterans. Comparative analyses were performed within the food category faunivory, both between hard- and soft-object feeding faunivores and between primarily insectivorous and carnivorous taxa. Additionally, microwear in faunivores was compared to that reported in the literature for frugivorous and folivorous primates. The results indicated that although insectivores and carnivores could not be distinguished by microwear analyses, hard-object faunivores (i. e., those that primarily consume beetles or actively comminute bone) can be readily distinguished from soft-object faunivores (i. e., moth, caterpillar, or vertebrate flesh specialists). The hard-object faunivores consistently exhibited greater pit frequencies (in excess of 40%). Furthermore, comparisons of these microwear data on faunivorous mammals to previous work on frugivorous and folivorous primates (Teaford, 1988, pers. comm.; Teaford and Runestad, 1992, pers. comm.; Teaford and Walker: American Journal of Physical Anthropology 64:191–200, 1984) permitted three observations to be made. 1) Faunivores tend to have higher mean feature densities than either frugivores or folivores, although these differences are not consistently statistically distinct. 2) Faunifores and frugivores that feed on hard-objects have comparable mean pit frequencies. 3) Although it is impossible to distinguish faunivores and folivores on the basis of metric analysis of gross molar morphology, this distinction can be made on microwear criteria. Both hard- and soft-object faunivores exhibit much higher mean pit frequencies than primarily folivorous species. © 1993 Wiley-Liss, Inc.  相似文献   

10.
11.
Belowground plant parts were important potential food resources in the habitats associated with Pliocene and early Pleistocene hominids. The food gathering and dental adaptations of three groups of modem mammals — bears, pigs, and humans — testify to the earlier convergence of these animals on this resource. Since belowground food reserves are relatively unaffected by the factors controlling aboveground food supply (fire, drought, and grazing stress), exploitation of this stable nutritional bank had distinct energetic and behavioral advantages for hominids.  相似文献   

12.
Comparison of the microwear features created on the occlusal surfaces of molar teeth from different cultural horizons at abu Hureyra, northern Syria, indicates that the hardness of the food eaten changed profoundly after the introduction of domestic cereal grains at the beginning of the Neolithic (Neolithic 2A), and again after the introduction of pottery in Neolithic 2C times. Comparison with the microwear features on the teeth of human groups known to eat cooked food demonstrated the identity of the microwear on the abu Hureyra teeth from the pottery levels with those who had eaten cooked food. It is suggested that the evidence for an increase in the population in Neolithic 2C times is a direct consequence of changes in food preparation techniques.  相似文献   

13.
New stature estimates are provided for A.L.288-1 (Australopithecus afarensis) based on (1) the relationship between femur length and stature in separate samples of human pygmies and pygmy chimpanzees and (2) model II regression alternatives to standard least-squares methods. Estimates from the two samples are very similar and converge on a value of approximately 3'6" for "Lucy." These results are compared to prior estimates and extended to other small-bodied hominids such as STS-14 and O.H.62. A new foot-to-stature ratio is also estimated for A.L.288-1, and its potential biomechanical significance for gait is evaluated in comparison to other groups.  相似文献   

14.
It is well known that humans take about twice as long as apes to mature. The traditional view that such delayed maturation was already present in australopithecines has been called into question during the past several years. We have approached this problem by looking at patterns of dental development in gracile and robust australopithecines from South Africa and comparing them to patterns found in extant humans and apes. We have employed both 2 and 3 dimensional computed tomography in our research. The dental growth patterns in these two australopithecine morphs differ, particularly in M1/I1 development. The robust australopithecines are more humanlike and the gracile australopithecines more apelike in this feature (“humanlike” and “apelike” are not used in any taxonomic sense). Pattern and chronology of dental development must be considered separately. Several major problem areas for future research are identified, most of which revolve around the issue of intra- versus interspecific variation.  相似文献   

15.
G. Berillon 《Human Evolution》2003,18(3-4):113-122
Early hominid feet are often very fragmentary preserved and their architectural approaches stayed limited and subject to controversy. This study proposes an architectural analysis of the primate foot realised on dislocated skeleton. It is based on the angular analysis of geometrical relationships between the joint areas. We investigate the longitudinal structure of the primate foot and we present the results concerning someAustralopithecus afarensis specimens from Hadar (Ethiopia) and theHomo habilis Olduvai Hominid 8 foot (Tanzania). The architectural analysis argues for the lack of a longitudinal medial arch inA. afarensis, their joints being in neutral position. On the contrary, the more recent OH8 specimen is arched both medially and laterally.  相似文献   

16.
17.
Domestic ruminant selectivity induces floristic changes in pasturelands, risking sustainability and limiting the subsequent availability of susceptible plant species. Development of preferences for species of lower nutritional quality may help to overcome those problems. In this study, we tested the hypothesis that early experience of sheep with a low-quality food (LQF) in a nutritional enriched context increases preference for LQF in adulthood. We predicted a higher proportional consumption of LQF in experienced lambs (EL) than in inexperienced lambs (IL) in choice situations involving LQF and alternative foods. Additionally, we determined intake of LQF by EL and IL at different levels of high-quality food (HQF) availability. From 60 to 210 days of age, EL were fed in separated feed bunks mature oat hay (LQF) simultaneously with sunflower meal (SM) and corn grain (CG), whereas IL were fed alfalfa hay (HQF) simultaneously with SM and CG. After exposure, EL and IL were offered LQF in free choice situations involving alternative foods, and also at five levels of HQF availability (100%, 75%, 50%, 25% and 0% of ad libitum intake). Proportional consumption of LQF was lower or similar in EL than IL. Intake of LQF was also lower or similar in EL than IL at all levels of HQF availability, except when the LQF was the only food available. Our results did not support the hypothesis that early experience with a LQF in a nutritional enriched context increases preference for LQF in adulthood. On the contrary, experience with LQF diminished subsequent preference for LQF in adulthood. It is proposed that, in the conditions of our study, continuous comparison between the LQF and the high-quality supplements (CG and SM) during the early exposure period lead to devaluation of LQF by EL through a simultaneous negative contrast effect.  相似文献   

18.
19.
A new technique for molar use-wear analysis is applied to samples of all 16 species of extinct lemurs with known dentitions, as well as to a large comparative sample of extant primates. This technique, which relies on the light refractive properties of wear pits and scratches as seen under a standard stereoscopic microscope, has shown itself to be effective in distinguishing the diets of ungulates and extant primates. We draw dietary inferences for each of the 16 extinct lemur species in our database. There is a strong phylogenetic signal, with the Palaeopropithecidae showing use-wear signatures similar to those of the Indriidae; extinct lemurids (Pachylemur spp.) showing striking similarities to extant lemurids (except Hapalemur spp.); and Megaladapis showing similarities to Lepilemur spp. Only the Archaeolemuridae have dietary signatures unlike those of any extant lemurs, with the partial exception of Daubentonia. We conclude that the Archaeolemuridae were hard-object feeders; the Palaeopropithecidae were seed predators, consuming a mixed diet of foliage and fruit to varying degrees; Pachylemur was a fruit-dominated mixed feeder, but not a seed predator; and all Megaladapis were leaf browsers. There is no molar use wear evidence that any of the extinct lemurs relied on terrestrial foods (C4 grasses, tubers, rhizomes). This has possible implications for the role of the disappearance of wooded habitats in the extinction of lemurs.  相似文献   

20.
Reconstruction of life history variables of fossil hominids on the basis of dental development requires understanding of and comparison with the pattern and timing of dental development among both living humans and pongids. Whether dental development among living apes or humans provides a better model for comparison with that of Plio-Pleistocene hominids of the genus Australopithecus remains a contentious point. This paper presents new data on chimpanzees documenting developmental differences in the dentitions of modern humans and apes and discusses their significance in light of recent controversies over the human or pongid nature of australopithecine dental development. Longitudinal analysis of 299 lateral head radiographs from 33 lab-reared chimpanzees (Pan troglodytes) of known chronological age allows estimation of means and standard deviations for the age at first appearance of 8 developmental stages in the mandibular molar dentition. Results are compared with published studies of dental development among apes and with published standards for humans. Chimpanzees are distinctly different from humans in two important aspects of dental development. Relative to humans, chimpanzees show advanced molar development vis a vis anterior tooth development, and chimpanzees are characterized by temporal overlap in the calcification of adjacent molar crowns, while humans show moderate to long temporal gaps between the calcification of adjacent molar crowns. In combination with recent work on enamel incremental markers and CAT scans of developing dentitions of Plio-Pleistocene hominids, this evidence supports an interpretation of a rapid, essentially “apelike” ontogeny among australopithecines. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号