首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In this paper, a plasmonic perfect absorber (PPA) based on metal-insulator-metal-insulator-metal (MIMIM) structure has been designed for refractive index sensing of glucose solutions (analyte) and then a new method has been proposed for fast, low-cost, and easy measurement of sensor’s sensitivity. Simulation results show that the absorption spectrum of the proposed sensor has two resonance peaks that with an increase in analyte refractive index, both of them are red-shifted. In our proposed measurement technique, two conventional single-wavelength lasers (with wavelengths of 1050 nm and 1750 nm) are used for vertical plane wave light illumination on the structure. Then, the absorbed powers at 1750 nm (A2) and 1050 nm (A1) wavelengths are calculated and variation of the absorption ratio (A2/A1) due to change of analyte refractive index would be introduced as the sensitivity of sensor (S = Δ(A2/A1)/Δn). Obtained results show that the increase of analyte refractive index from n = 1.312 to n = 1.384 will result in an increase of sensor’s sensitivity from 9.3/RIU to 33.475/RIU.

  相似文献   

2.
In this article, a D-shaped photonic crystal fiber based surface plasmon resonance sensor is proposed for refractive index sensing. Surface plasmon resonance effect between surface plasmon polariton modes and fiber core modes of the designed D-shaped photonic crystal fiber is used to measure the refractive index of the analyte. By using finite element method, the sensing properties of the proposed sensor are investigated, and a very high average sensitivity of 7700 nm/RIU with the resolution of 1.30 × 10?5 RIU is obtained for the analyte of different refractive indices varies from 1.43 to 1.46. In the proposed sensor, the analyte and coating of gold are placed on the plane surface of the photonic crystal fiber, hence there is no necessity of the filling of voids, thus it is gentle to apply and easy to use.  相似文献   

3.

We present a refractometric sensor realized as a stack of metallic gratings with subwavelength features and embedded within a low-index dielectric medium. Light is strongly confined through funneling mechanisms and excites resonances that sense the analyte medium. Two terminations of the structure are compared. One of them has a dielectric medium in contact with the analyte and exploits the selective spectral transmission of the structure. The other design has a metallic continuous layer that generates surface plasmon resonances at the metal/analyte interface. Both designs respond with narrow spectral features that are sensible to the change in the refractive index of the analyte and can be used for sensing biomedical samples.

  相似文献   

4.
In this paper, we propose a design for surface plasmon polariton band gap (SPPBG)-enabled plasmonic Mach–Zehnder interferometer (PMZI) comprising of array of silver nanorods embedded upright into silicon on insulator (SOI) substrate and analyze its potential in sensing, intended for cancer therapy. Periodic arrangement of nanorods embedded into SOI substrate grants strong spatial confinement and assist waveguidance to the propagating plasmon mode due to the SPPBG effect. This arrayed system triggers local field enhancement promoting sensing proficiency of the device and is assessed in terms of wavelength and phase shift. Proposed design of SPPBG-enabled PMZI sensor is successfully employed for detection and classification of various cancerous cells. The structural parameters of PMZI are optimized in compliance with the plasmonic band gap in the range of 400–800 nm yielding exceptionally high sensitivity at input wavelength of 633 nm. Volumetric analysis of the analyte reveals that very small analyte volume of the order of 10?15 cc is sufficient to yield significant phase shift. Phase shift obtained for the breast adenocarcinoma and blood cancer cell lines are 1.2357radian and 0.3351radian, respectively, which read very high value of phase shifts to identify extremely small changes in refractive index of the analyte. Figure of merit calculated thereby expose impressive device performance outdoing preceding plasmonic sensors leading to validation of proposed ultra-compact-sensitive PMZI design.  相似文献   

5.

Platinum diselenide (PtSe2), an emerging two-dimensional transition metal dichalcogenide, exhibits thickness-dependent refractive index, and hence, intriguing optical properties. Here, we employ it as a plasmonic sensing substrate to achieve significant enhancement in Goos-Hänchen shift sensitivity. Through systematic optimization of all parameters, four optimum sensing configurations have been achieved at different wavelengths ranging from visible to near-infrared region, where the Goos-Hänchen shift sensitivity receives four times enhancement in comparison with the conventional bare gold sensing substrate. There is a linear range of Goos-Hänchen shift with the tiny change of refractive index for each optimal configuration. The detection limit of the refractive index change can be as low as 5 × 10−7 RIU which is estimated to be lower by 2 orders of magnitude, and the corresponding sensitivity of biomolecules has a 1000-fold increment compared with that of bare gold-based sensors.

  相似文献   

6.
We propose a highly sensitive novel diamond ring fiber (DRF)-based surface plasmon resonance (SPR) sensor for refractive index sensing. Chemically active plasmonic material (gold) layer is coated inside the large cavity of DRF, and the analyte is infiltrated directly through the fiber instead of selective infiltration. The light guiding properties and sensing performances are numerically investigated using the finite element method (FEM). The proposed sensor shows a maximum wavelength and amplitude interrogation sensitivity of 6000 nm/RIU and 508 RIU?1, respectively, over the refractive index range of 1.33–1.39. Additionally, it also shows a sensor resolution of 1.67 × 10?5 and 1.97 × 10?5 RIU by following the wavelength and amplitude interrogation methods, respectively. The proposed diamond ring fiber has been fabricated following the standard stack-and-draw method to show the feasibility of the proposed sensor. Due to fabrication feasibility and promising results, the proposed DRF SPR sensor can be an effective tool in biochemical and biological analyte detection.  相似文献   

7.
An  Guowen  Li  Shuguang  Cheng  Tonglei  Yan  Xin  Zhang  Xuenan  Zhou  Xue  Yuan  Zhenyu 《Plasmonics (Norwell, Mass.)》2019,14(1):155-163

In this paper, we demonstrate a high sensitivity refractive index (RI) sensor with D-shaped structure covered with gold and graphene film. Specifically, the effect of structural parameters on the stability of fiber sensor is analyzed. In our research, it have been found that the sensor we proposed is not very sensitive to the change of structure parameters on the premise of ensuring the sensing precision. This advantage means that the requirements for machining errors are reduced. Further probing shows that the proposed sensor shows a maximum wavelength interrogation sensitivity of 4391nm/RIU with the dynamic refractive index range from 1.33 to 1.39 and a maximum amplitude sensitivity of 1139RIU− 1 with the analyte RI = 1.38 in the visible region. The corresponding resolution are 2.28 × 10− 5 and 8.78 × 10− 6 based on the methods of wavelength interrogation and amplitude-(or phase-) based method. These characteristics of compact sensing architectures, simple to fabricate, and high sensitivity open the possibility of using this type of sensor in biological applications.

  相似文献   

8.
It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.  相似文献   

9.
A high sensitive plasmonic refractive index sensor based on metal-insulator-metal (MIM) waveguides with embedding metallic nano-rods in racetrack resonator has been proposed. The refractive index changes of the dielectric material inside the resonator together with temperature changes can be acquired from the detection of the resonance wavelength, based on their linear relationship. With optimum design and considering a tradeoff among detected power, structure size, and sensitivity, the finite difference time domain simulations show that the refractive index and temperature sensitivity values can be obtained as high as 2610 nm per refractive index unit (RIU) and 1.03 nm/°C, respectively. In addition, resonance wavelengths of resonator are obtained experimentally by using the resonant conditions. The effects of nano-rods radius and refractive index of racetrack resonator are studied on the sensing spectra, as well. The proposed structure with such high sensitivity will be useful in optical communications that can provide a new possibility for designing compact and high-performance plasmonic devices.  相似文献   

10.
A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU?1, respectively, corresponding to a resolution of 2.8 × 10?5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.  相似文献   

11.
A small array of subwavelength apertures patterned in a gold film on glass was characterized for use as a biosensor. It is widely believed that such arrays allow the resonance of photons with surface plasmons in the metallic film. Surface plasmon methods (and other evanescent wave methods) are extremely well suited for the measure of real time biospecific interactions. An extremely high sensitivity of 88,000%/refractive index unit was measured on an array with theoretical active area of .09 microm2. The formation of a biological monolayer was monitored. Both sensitivity and resolution were determined through measurement. The measured resolution, for a sensor with an active area of less than 1.5 microm2, is 9.4 x 10(-8) refractive index units which leads to a calculated sensitivity of 3.45E6%/refractive index unit. These values far exceed theoretical and calculated values of other grating coupled surface plasmon resonance (SPR) detectors and prism based SPR detectors. Because the active sensing area can be quite small (.025 microm2) single molecule studies are possible as well as massive multiplexing on a single chip format.  相似文献   

12.
Recent improvements in sensitivity have enabled direct binding studies of small molecules with evanescent wave biosensors, which monitor binding by measuring refractive index changes close to the sensing surface. The universal solvent for small molecules, dimethylsulfoxide has a high refractive index; consequently, on ligate addition a large non-specific solvent effect is seen which can mask the specific signal. It has been previously noted that different sensor surfaces can respond differently to the same buffer change. The difference is proposed to arise from differences in buffer space and contraction and swelling of the surface hydrogel. Within this paper, a number of calibration approaches are investigated and tested using warfarin binding to human serum albumin as a model system. A number of recommendations are made for accurate referencing for non-specific effects. Changes to the ionic strength of the running buffer had little effect, whilst changes to the charge density of the carboxylmethyl dextran significantly affected how well the control surface reflects the non-specific signal. An amended 'calibration method' can be used, however, it is an additional complex step that was found to overcorrect in the presence of non-specific binding. Matching immobilisation levels between control and active surface significantly reduces solvent differences allowing accurate correction providing solvent compositional changes are minimised in experimental design. Under these circumstances, the traditional method of simple subtraction of the control from the active response is the most appropriate method of correction.  相似文献   

13.
The sensitivity is the most important parameter in the sensing field. Effort was made to study the effect of gold coating on the sensitivity of rhombic silver nanostructure array through numerical simulation using the discrete dipole approximation method. This study shows that thickness of the gold coating can be varied to tune the sensitivity of the rhombic silver nanostructure array. The Au–Ag nanostructure array is found to possess the maximum refractive index sensitivity of 714 nm/RIU when thickness of gold is 20 nm, thickness of silver is 25 nm, and refractive index of the medium is around 1.35. The condition for achieving the maximum refractive index sensitivity can be used for detecting many species of biomolecules and drugs in the future.  相似文献   

14.
We design terahertz (THz) surface-plasmon-resonance (SPR) sensors using a ferroelectric polyvinylidene fluoride (PVDF) thin layer for biological sensing. The reflectivity properties based on SPR are described using transfer matrix method (TMM) and numerically simulated using finite-difference time domain (FDTD) method. The sensing characteristics of the structure are systematically analyzed through the examination of the reflectivity spectrum. The results reveal that the pronounced SPR resonance peak has quasi-linear relationship with the refractive index variation of the material under investigation. Through analyzing and optimizing the structural parameters of the THz SPR sensor, we achieved the theoretical value of the refractive index detection sensitivity as high as 0.393 THz/unit change of refractive index (RIU) for a 20-μm-thick liquid sample with a 10-μm PVDF layer. This work shows great promise toward realizing a THz SPR sensor with high sensitivity for identifying the signatures of biological fluid sample.  相似文献   

15.
In this study, we report a simple, low-cost surface plasmon resonance (SPR)-sensing cartridge based on a loop-mediated isothermal amplification (LAMP) method for the on-site detection of the hepatitis B virus (HBV). For LAMP detection, a SPR based LAMP sensing system (SPRLAMP) was constructed, including a novel SPRLAMP sensing cartridge integrating a polymethyl methacrylate (PMMA) micro-reactor with a polycarbonate (PC)-based prism coated with a 50 nm Au film. First, we found that the change of refractive index of the bulk solution was approximately 0.0011 refractive index (RI) units after LAMP reaction. The PC-based prism's linearity and thermal responses were compared to those of a traditional glass prism to show that a PC-based prism can be used for SPR measurement. Finally, the HBV template mixed in the 10 μl LAMP solution could be detected by SPRLAMP system in 17 min even at the detection-limited concentration of 2 fg/ml. We also analyzed the correlation coefficients between the initial concentrations of HBV DNA templates and the system response (ΔRU) at varying amplification times to establish an optimal amplification time endpoint of 25 min (R(2)=0.98). In conclusion, the LAMP reaction could be detected with the SPRLAMP sensing cartridge based on direct sensing of the bulk refractive index.  相似文献   

16.
Grating-coupled surface plasmon resonance (GCSPR) is a method for the accurate assessment of analyte in a multiplexed format using small amounts of sample. In GCSPR, the analyte is flowed across specific receptors (e.g. antibodies or other proteins) that have been immobilized on a sensor chip. The chip surface is illuminated with p-polarized light that couples to the gold surface's electrons to form a surface plasmon. At a specific angle of incidence, the GCSPR angle, the maximum amount of coupling occurs, thus reducing the intensity of reflected light. Shifts in the GCSPR angle can be correlated with refractive index increases following analyte capture by chip-bound receptors. Because regions of the chip can be independently analyzed, this system can assess 400 interactions between analyte and receptor on a single chip. We have used this label-free system to assess a number of molecules of immunological interest. GCSPR can simultaneously detect an array of cytokines and other proteins using the same chip. Moreover, GCSPR is also compatible with assessments of antigen expression by intact cells, detecting cellular apoptosis and identifying T cells and B cells. This technology represents a powerful new approach to the analysis of cells and molecular constituents of biological samples.  相似文献   

17.
The localized surface plasmon resonance dependence on surrounding medium refractive index of Ag, Al, Au, and Cu nanoparticles is examined by electrodynamic approach. The refractive index sensitivity and sensing figure of merit (FOM) dependence of selected metal nanoparticles with similar geometry shows that although, sensing relevant parameters are shape (i.e., aspect ratio), and material dependent below the width 20 nm, but above this size these parameters are material independent under similar geometrical conditions. We have concluded that at optimum size, however, Al shows much higher refractive index sensitivity (RIS) in comparison to Au, Cu, and Ag, but FOM is higher for Ag in comparison to other metals. The observed sensing behavior is expected due to parameters like surface scattering, dynamic depolarization, radiation damping, and interband transitions, which may influence the nanorod plasmons.  相似文献   

18.

We propose a highly sensitive refractive index sensor based on the surface phonon resonance (SPhR) in the mid-IR spectral range. Surface phonon polaritons (SPhPs) are formed on polar dielectrics such as SiC in mid-IR wavelength range and can be excited with the help of a metallic grating at specific wavelength termed as resonance wavelength. The resonance wavelength of SPhP is significantly affected by the refractive index of the analyte medium placed over the grating. This forms the basis of a refractive index sensor. We have numerically evaluated the performance of such an SPhP-based refractive index sensor by using rigorous coupled wave analysis (RCWA) in terms of sensitivity, detection accuracy, and quality factor. The quality factor and detection accuracy of the sensor formed on SiC substrate are found to be 225.1 RIU–1 (inverse of refractive index unit) and 6.75, respectively. We have also extended the study for other polar dielectric substrates cBN and GaN and observed considerable enhancement in the performance of the sensor for GaN. The values of quality factor and detection accuracy could be increased to 361.2 RIU–1 and 10.84, respectively, by using GaN substrate. The proposed sensor finds applications in refractive index sensing of liquids and biomolecules having refractive index in the range 1.33–1.36.

  相似文献   

19.
Experimental and theoretical study of sensors based on enhanced transmission through periodic metal nanoslits is presented. Our approach consists of the design of one-dimensional nanoslits array and its application in sensing for water quality control. Rigorous coupled waves analysis was used for the design and fit to the experimental data. Two types of surface plasmon resonance excitations are shown to be possible, one at the upper grating–analyte interface and one at the lower grating–substrate interface. This latter resonance is shown to be affected by the multiple interference or cavity-type effects. Those structures were fabricated by deposition of the metal layer and electron beam lithography of the nanostructure. We found that Ag-based periodic array exhibits the highest sensitivity to refractive index variations. Sensitivity enhancement was measured by ethanol concentrations in water. Stability of the Ag-based sensor was improved by covering the grating with less than 15 nm polymethyl methacrylate capping layer without deterioration of the sensitivity.  相似文献   

20.
A surface plasmon resonance (SPR) sensor based on D-shaped photonic crystal fiber (PCF) coated with indium tin oxide (ITO) film is proposed and numerically investigated. Thanks to the adjustable complex refractive index of ITO, the sensor can be operated in the near-infrared (NIR) region. The wavelength sensitivity, amplitude sensitivity, and phase sensitivity are investigated with different fiber structure parameters. Simulation results show that ~6000 nm/refractive index unit (RIU), ~148/RIU, and ~1.2?×?106 deg/RIU/cm sensitivity can be achieved for wavelength interrogation, amplitude interrogation, and phase interrogation, respectively, when the environment refractive index varies between 1.30 and 1.31. It is noted that the wavelength sensitivity and phase sensitivity are more pronounced with larger refractive index. The proposed SPR sensor can be used in various applications, including medicine, environment, and large-scale targets detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号