首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAHPS) catalyzes the first reaction of the aromatic biosynthetic pathway in bacteria, fungi, and plants, the condensation of phosphoenolpyruvate (PEP) and d-erythrose-4-phosphate (E4P) with the formation of DAHP. Crystals of DAHPS from Thermotoga maritima (DAHPS(Tm)) were grown in the presence of PEP and metal cofactor, Cd(2+), and then soaked with E4P at 4 degrees C where the catalytic activity of the enzyme is negligible. The crystal structure of the "frozen" reaction complex was determined at 2.2A resolution. The subunit of the DAHPS(Tm) homotetramer consists of an N-terminal ferredoxin-like (FL) domain and a (beta/alpha)(8)-barrel domain. The active site located at the C-end of the barrel contains Cd(2+), PEP, and E4P, the latter bound in a non-productive conformation. The productive conformation of E4P is suggested and a catalytic mechanism of DAHPS is proposed. The active site of DAHPS(Tm) is nearly identical to the active sites of the other two known DAHPS structures from Escherichia coli (DAHPS(Ec)) and Saccharomyces cerevisiae (DAHPS(Sc)). However, the secondary, tertiary, and quaternary structures of DAHPS(Tm) are more similar to the functionally related enzyme, 3-deoxy-d-manno-octulosonate-8-phosphate synthase (KDOPS) from E.coli and Aquiflex aeolicus, than to DAHPS(Ec) and DAHPS(Sc). Although DAHPS(Tm) is feedback-regulated by tyrosine and phenylalanine, it lacks the extra barrel segments that are required for feedback inhibition in DAHPS(Ec) and DAHPS(Sc). A sequence similarity search revealed that DAHPSs of phylogenetic family Ibeta possess a FL domain like DAHPS(Tm) while those of family Ialpha have extra barrel segments similar to those of DAHPS(Ec) and DAHPS(Sc). This indicates that the mechanism of feedback regulation in DAHPS(Tm) and other family Ibeta enzymes is different from that of family Ialpha enzymes, most likely being mediated by the FL domain.  相似文献   

2.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

3.
In most prokaryotic and eukaryotic organisms dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are encoded by independent genes. Evidence is presented here that the higher plant Arabidopsis thaliana has two bifunctional DHFR—TS genes. The structure of the genes, DHFR at the amino terminus and TS at the carboxy terminus, is identical to their organization in protozoa, the only other known organisms with bifunctional genes. Sequence alignments suggest that the bifunctional genes from protozoa and higher plants may have different evolutionary origins. The position of the introns support the complementary hypothesis that the DHFR domain of the bifunctional plant genes and the monofunctional DHFR gene of vertebrates derive from a common, intron-containing progenitor, although the structure (bifunctional or monofunctional) of the ancestral gene remains indeterminate. Comparison of the two bifunctional genes of Arabidopsis indicates that the DHFR and TS domains evolved at different rates; each following the evolutionary history of their monofunctional counterparts. In contrast to the DHFR domain, the evolution of the TS domain shows a higher level of nucleotide and amino acid sequence conservation, but a remarkable variability in the intron positions.  相似文献   

4.
J M Ray  C Yanofsky    R Bauerle 《Journal of bacteriology》1988,170(12):5500-5506
The nucleotide sequence of aroH, the structural gene for the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Trp)], is presented, and the deduced amino acid sequence of AroH is compared with that of the tyrosine-sensitive (AroF) and phenylalanine-sensitive (AroG) DAHPS isoenzymes. The high degree of sequence similarity among the three isoenzymes strongly indicates that they have a common evolutionary origin. In vitro chemical mutagenesis of the cloned aroH gene was used to identify residues and regions of the polypeptide essential for catalytic activity and for tryptophan feedback regulation. Missense mutations leading either to loss of catalytic activity or to feedback resistance were found interspersed throughout the polypeptide, suggesting overlapping catalytic and regulatory sites in DAHPS(Trp). We conclude that the specificity of feedback regulation of the isoenzymes was probably acquired by the duplication and divergent evolution of an ancestral gene, rather than by domain recruitment.  相似文献   

5.
Present within bacteria, plants, and some lower eukaryotes 3‐deoxy‐D ‐arabino‐heptulosonate 7‐phosphate synthase (DAHPS) catalyzes the first committed step in the synthesis of a number of metabolites, including the three aromatic amino acids phenylalanine, tyrosine, and tryptophan. Catalyzing the first reaction in an important biosynthetic pathway, DAHPS is situated at a critical regulatory checkpoint—at which pathway input can be efficiently modulated to respond to changes in the concentration of pathway outputs. Based on a phylogenetic classification scheme, DAHPSs have been divided into three major subtypes (Iα, Iβ, and II). These subtypes are subjected to an unusually diverse pattern of allosteric regulation, which can be used to further subdivide the enzymes. Crystal structures of most of the regulatory subclasses have been determined. When viewed collectively, these structures illustrate how distinct mechanisms of allostery are applied to a common catalytic scaffold. Here, we review structural revelations regarding DAHPS regulation and make the case that the functional difference between the three major DAHPS subtypes relates to basic distinctions in quaternary structure and mechanism of allostery.  相似文献   

6.
Human CA125, encoded by the MUC16 gene, is an ovarian cancer antigen widely used for a serum assay. Its extracellular region consists of tandem repeats of SEA domains. In this study we determined the three-dimensional structure of the SEA domain from the murine MUC16 homologue using multidimensional NMR spectroscopy. The domain forms a unique alpha/beta sandwich fold composed of two alpha helices and four antiparallel beta strands and has a characteristic turn named the TY-turn between alpha1 and alpha2. The internal mobility of the main chain is low throughout the domain. The residues that form the hydrophobic core and the TY-turn are fully conserved in all SEA domain sequences, indicating that the fold is common in the family. Interestingly, no other residues are conserved throughout the family. Thus, the sequence alignment of the SEA domain family was refined on the basis of the three-dimensional structure, which allowed us to classify the SEA domains into several subfamilies. The residues on the surface differ between these subfamilies, suggesting that each subfamily has a different function. In the MUC16 SEA domains, the conserved surface residues, Asn-10, Thr-12, Arg-63, Asp-75, Asp-112, Ser-115, and Phe-117, are clustered on the beta sheet surface, which may be functionally important. The putative epitope (residues 58-77) for anti-MUC16 antibodies is located around the beta2 and beta3 strands. On the other hand the tissue tumor marker MUC1 has a SEA domain belonging to another subfamily, and its GSVVV motif for proteolytic cleavage is located in the short loop connecting beta2 and beta3.  相似文献   

7.
Fertilin beta (also known as ADAM2), a mammalian sperm protein that mediates gamete cell adhesion during fertilization, is a member of the ADAM protein family whose members have disintegrin domains with homology to integrin ligands found in snake venoms. Fertilin beta utilizes an ECD sequence within its disintegrin domain to interact with the egg plasma membrane; the Asp is especially critical. Based on what is known about different integrin subfamilies and their ligands, we sought to characterize fertilin beta binding sites on mouse eggs, focusing on integrin subfamilies that recognize short peptide sequences that include an Asp residue: the alpha(5)/alpha(8)/alpha(v)/alpha(IIb) or RGD-binding subfamily (alpha(5)beta(1), alpha(8)beta(1), alpha(V)beta(1), alpha(V)beta(3), alpha(V)beta(5), alpha(V)beta(6), alpha(V)beta(8), and alpha(IIb)beta(3)) and the alpha(4)/alpha(9) subfamily (alpha(4)beta(1), alpha(9)beta(1), and alpha(4)beta(7)). We tested peptide sequences known to perturb interactions mediated by these integrins in two different assays for fertilin beta binding. Peptides with the sequence MLDG, which perturb alpha(4)/alpha(9) integrin-mediated interactions, significantly inhibit fertilin beta binding to eggs, which suggests a role for a member of this integrin subfamily as a fertilin beta receptor. RGD peptides, which perturb alpha(5)/alpha(8)/alpha(v)/alpha(IIb) integrin-mediated interactions, have partial inhibitory activity. The anti-alpha(6) antibody GoH3 has little or no inhibitory activity. An antibody to the integrin-associated tetraspanin protein CD9 inhibits the binding of a multivalent presentation of fertilin beta (immobilized on beads) but not soluble fertilin beta, which we speculate has implications for the role of CD9 in the strengthening of fertilin beta-mediated cell adhesion but not in initial ligand binding.  相似文献   

8.
BACKGROUND: In microorganisms and plants the first step in the common pathway leading to the biosynthesis of aromatic compounds is the stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose-4-phosphate (E4P) giving rise to 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). This reaction is catalyzed by DAHP synthase (DAHPS), a metal-activated enzyme, which in microorganisms is the target for negative-feedback regulation by pathway intermediates or by end products. In Escherichia coli there are three DAHPS isoforms, each specifically inhibited by one of the three aromatic amino acids. RESULTS: The crystal structure of the phenylalanine-regulated form of DAHPS complexed with PEP and Pb2+ (DAHPS(Phe)-PEP-Pb) was determined by multiple wavelength anomalous dispersion phasing utilizing the anomalous scattering of Pb2+. The tetramer consists of two tight dimers. The monomers of the tight dimer are coupled by extensive interactions including a pair of three-stranded, intersubunit beta sheets. The monomer (350 residues) is a (beta/alpha)8 barrel with several additional beta strands and alpha helices. The PEP and Pb2+ are at the C-ends of the beta strands of the barrel, as is SO4(2-), inferred to occupy the position of the phosphate of E4P. Mutations that reduce feedback inhibition cluster about a cavity near the twofold axis of the tight dimer and are centered approximately 15 A from the active site, indicating the location of a separate regulatory site. CONCLUSIONS: The crystal structure of DAHPS(Phe)-PEP-Pb reveals the active site of this key enzyme of aromatic biosynthesis and indicates the probable site of inhibitor binding. This is the first reported structure of a DAHPS; the structure of its two paralogs and of a variety of orthologs should now be readily determined by molecular replacement.  相似文献   

9.
Understanding the specificity of protein-protein interaction mediated by domains and their ligands will have strong impact on basic and applied research. Visual inspection of WW domain sequences prompted a general classification of the domains into two large subfamilies. One subfamily contains two consecutive aromatic residues in the beta 2 strand of the domain whereas the other contains three or four consecutive aromatic residues in the same position. In the recent past, we proposed a rule of ‘two vs. three aromatics’ in the beta 2 strand of WW domains as a molecular discriminator between Class I and Class II WW domains, which recognize PPxY or PPLP motifs, respectively. Using phage display libraries expressing WW domains with random sequences replacing a part of the beta 2 strand, we provided additional evidence supporting our rule. We conclude that three consecutive aromatic amino acids within the beta 2 strand of WW domain are required but not always sufficient for the WW domain to belong to Class II.  相似文献   

10.
The neuronal adaptor protein Fe65 is involved in brain development, Alzheimer disease amyloid precursor protein (APP) signaling, and proteolytic processing of APP. It contains three protein-protein interaction domains, one WW domain, and a unique tandem array of phosphotyrosine-binding (PTB) domains. The N-terminal PTB domain (Fe65-PTB1) was shown to interact with a variety of proteins, including the low density lipoprotein receptor-related protein (LRP-1), the ApoEr2 receptor, and the histone acetyltransferase Tip60. We have determined the crystal structures of human Fe65-PTB1 in its apo- and in a phosphate-bound form at 2.2 and 2.7A resolution, respectively. The overall fold shows a PTB-typical pleckstrin homology domain superfold. Although Fe65-PTB1 has been classified on an evolutionary basis as a Dab-like PTB domain, it contains attributes of other PTB domain subfamilies. The phosphotyrosine-binding pocket resembles IRS-like PTB domains, and the bound phosphate occupies the binding site of the phosphotyrosine (Tyr(P)) within the canonical NPXpY recognition motif. In addition Fe65-PTB1 contains a loop insertion between helix alpha2 and strand beta2(alpha2/beta2 loop) similar to members of the Shc-like PTB domain subfamily. The structural comparison with the Dab1-PTB domain reveals a putative phospholipid-binding site opposite the peptide binding pocket. We suggest Fe65-PTB1 to interact with its target proteins involved in translocation and signaling of APP in a phosphorylation-dependent manner.  相似文献   

11.
Civera C  Simon B  Stier G  Sattler M  Macias MJ 《Proteins》2005,58(2):354-366
Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.  相似文献   

12.
Classification and evolution of EF-hand proteins   总被引:14,自引:0,他引:14  
Forty-five distinct subfamilies of EF-hand proteins have been identified. They contain from two to eight EF-hands that are recognizable by amino acid sequence as being statistically similar to other EF-hand domains. All proteins within one subfamily are congruent to one another, i.e. the dendrogram computed from one of the EF-hand domains is similar, within statistical error, to the dendrogram computed from another(s) domain. Thirteen subfamilies - including Calmodulin, Troponin C, Essential light chain, Regulatory light chain - referred to collectively as CTER, are congruent with one another. They appear to have evolved from a single ur-domain by two cycles of gene duplication and fusion. The subfamilies of CTER subsequently evolved by gene duplications and speciations. The remaining 32 subfamilies do not show such general patterns of congruence; however, some - such as S100, intestinal calcium binding protein (calbindin 9kd), and trichohylin - do not form congruent clusters of subfamilies. Nearly all of the domains 1, 3, 5, and 7 are most similar to other ODD domains. Correspondingly the EVEN numbered domains of all 45 subfamilies most closely resemble EVEN domains of other subfamilies. Many sequence and chem-ical characteristics do not show systemic trends by subfamily or species of host organisms; such homoplasy is widespread. Eighteen of the subfamilies are heterochimeric; in addition to multiple EF-hands they contain domains of other evolutionary origins.© Kluwer Academic Publishers  相似文献   

13.
Staphylococcal protein A (SPA)-based vectors were constructed to direct secretion of the E1alpha and E1beta subunits of Pisum sativum mitochondrial pyruvate dehydrogenase from Bacillus subtilis. These proteins were not exported when the signal peptide from levansucrase (SacBSP) was fused to their N-termini. Both SacBSP-E1alpha and SacBSP-E1beta fusion proteins were insoluble in the cytoplasm. However, when the SPA open-reading frame was inserted between SacBSP and E1alpha or E1beta, corresponding fusion proteins were secreted from the cells. The first (E) IgG-binding domain of SPA was sufficient to direct low level secretion of both fusion proteins (SacBSP-E-E1alpha and SacBSP-E-E1beta). Adding the second (D) IgG-binding domain improved extracellular protein yields 3- to 4-fold over E alone, but was not as efficient as secretion of the full-length (EDABC) SPA-fusion proteins. All constructs were based on the pUB110-derived multicopy plasmid pWB705. Separate B. subtilis strains transformed with SacBSP-E-E1alpha-His(6) or SacBSP-E1beta were cocultivated in the presence of Ni-NTA agarose. The native pyruvate dehydrogenase alpha2beta2 structure was bound to the affinity matrix, demonstrating assembly after secretion. The use of SPA as a fusion partner during expression of heterologous proteins by B. subtilis provides the basis of a versatile system that can be used to study both secretion and protein:protein interactions.  相似文献   

14.
15.
A functional voltage-gated K+ (Kv) channel comprises four pore-forming α-subunits, and only members of the same Kv channel subfamily may co-assemble to form heterotetramers. The ether-à-go-go family of Kv channels (KCNH) encompasses three distinct subfamilies: Eag (Kv10), Erg (Kv11), and Elk (Kv12). Members of different ether-à-go-go subfamilies, such as Eag and Erg, fail to form heterotetramers. Although a short stretch of amino acid sequences in the distal C-terminal section has been implicated in subfamily-specific subunit assembly, it remains unclear whether this region serves as the sole and/or principal subfamily recognition domain for Eag and Erg. Here we aim to ascertain the structural basis underlying the subfamily specificity of ether-à-go-go channels by generating various chimeric constructs between rat Eag1 and human Erg subunits. Biochemical and electrophysiological characterizations of the subunit interaction properties of a series of different chimeric and truncation constructs over the C terminus suggested that the putative C-terminal recognition domain is dispensable for subfamily-specific assembly. Further chimeric analyses over the N terminus revealed that the N-terminal region may also harbor a subfamily recognition domain. Importantly, exchanging either the N-terminal or the C-terminal domain alone led to a virtual loss of the intersubfamily assembly boundary. By contrast, simultaneously swapping both recognition domains resulted in a reversal of subfamily specificity. Our observations are consistent with the notion that both the N-terminal and the C-terminal recognition domains are required to sustain the subfamily-specific assembly of rat Eag1 and human Erg.  相似文献   

16.

Background

In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario.

Results

Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations.

Conclusions

There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition ??from specialist to generalist??. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.  相似文献   

17.
Phylogenetic analysis groups mammalian odorant receptors into two broad classes and numerous subfamilies. These subfamilies are proposed to reflect functional organization. Testing this idea requires an assay allowing detailed functional characterization of odorant receptors. Here we show that a variety of Class I and Class II mouse odorant receptors can be functionally expressed in Xenopus laevis oocytes. Receptor constructs included the N-terminal 20 residues of human rhodopsin and were co-expressed with Galphaolf and the cystic fibrosis transmembrane regulator to allow electrophysiological measurement of receptor responses. For most mouse odorant receptors tested, these conditions were sufficient for functional expression. Co-expression of accessory proteins was required to allow functional surface expression of some mouse odorant receptors. We used this assay to examine the receptive ranges of all members of the mouse odorant receptor 42 (MOR42) subfamily. MOR42-1 responded to dicarboxylic acids, preferring a 10-12 carbon chain length. MOR42-2 responded to monocarboxylic acids (7-10 carbons). MOR42-3 responded to dicarboxylic acids (8-10 carbons) and monocarboxylic acids (10-12 carbons). Thus, the receptive range of each receptor was unique. However, overlap between the individual receptive ranges suggests that the members of this subfamily form one contiguous subfamily receptive range, suggesting that odorant receptor subfamilies do constitute functional units.  相似文献   

18.
Acetyl-coenzyme A synthases (ACS) are Ni-Fe-S containing enzymes found in archaea and bacteria. They are divisible into 4 classes. Class I ACS's catalyze the synthesis of acetyl-CoA from CO2 + 2e-, CoA, and a methyl group, and contain 5 types of subunits (alpha, beta, gamma, delta, and epsilon). Class II enzymes catalyze essentially the reverse reaction and have similar subunit composition. Class III ACS's catalyze the same reaction as Class I enzymes, but use pyruvate as a source of CO2 and 2e-, and are composed of 2 autonomous proteins, an alpha 2 beta 2 tetramer and a gamma delta heterodimer. Class IV enzymes catabolize CO to CO2 and are alpha-subunit monomers. Phylogenetic analyses were performed on all five subunits. ACS alpha sequences divided into 2 major groups, including Class I/II sequences and Class III/IV-like sequences. Conserved residues that may function as ligands to the B- and C-clusters were identified. Other residues exclusively conserved in Class I/II sequences may be ligands to additional metal centers in Class I and II enzymes. ACS beta sequences also separated into two groups, but they were less divergent than the alpha's, and the separation was not as distinct. Class III-like beta sequences contained approximately 300 residues at their N-termini absent in Class I/II sequences. Conserved residues identified in beta sequences may function as ligands to active site residues used for acetyl-CoA synthesis. ACS gamma-sequences separated into 3 groups (Classes I, II, and III), while delta-sequences separated into 2 groups (Class I/II and III). These groups are less divergent than those of alpha sequences. ACS epsilon-sequence topology showed greater divergence and less consistency vis-à-vis the other subunits, possibly reflecting reduced evolutionary constraints due to the absence of metal centers. The alpha subunit phylogeny may best reflect the functional diversity of ACS enzymes. Scenarios of how ACS and ACS-containing organisms may have evolved are discussed.  相似文献   

19.
In a previous work, we characterized the HinfI satellite DNA family in the subtribe Centaureinae (Cardueae) demonstrating that a “library” of eight HinfI subfamilies would exist in the common ancestor of all Centaureinae, which were differentially amplified in different lineages. Now, we extend our study by analyzing a total of 219 additional repeats from fifteen species belonging to Carlininae, Echinopsinae and Carduinae, and comparing them to those of Centaureinae. Most HinfI sequences belonged to the subfamily II, although a few sequences of other subfamilies were detected in some species. Additionally, a new subfamily characteristic of several Carduinae species was discovered. Although phylogenetic trees grouped sequences by subfamily affinity instead of species provenance, when comparing repeats of the same subfamily, the degree of divergence between any pair of sequences was related to the evolutionary distance between the species compared in most cases. Exceptions were in comparisons between sequences of some Centaureinae species, and between sequences of some Carduinae species and those of Centaureinae. Our results demonstrate that: (1) At least nine HinfI subfamilies would exist in the common ancestor of Cardueae, each one differentially amplified in different lineages; (2) After differential spreading, sequences of each subfamily evolved concertedly through molecular drive, resulting in the gradual divergence of repeats between different species; (3) The rate to which concerted evolution occurred was different between lineages according to the evolutionary history of each one.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号