首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of human lymphocytes with Epstein Barr virus (EBV) activates the release of lymphokines. Previous experiments have emphasized the ability of interferon-gamma (IFN-gamma) to prevent EBV-induced B cell transformation. However, the factors that regulate IFN-gamma synthesis and release during in vitro EBV infection are controversial. In the present investigation we have systematically evaluated the kinetics of production, cellular origins, and accessory cell requirements for IFN-alpha and IFN-gamma and for IL 1 and IL 2, after EBV infection. Our data indicate that IFN-alpha is released entirely by natural killer (NK) cells and B cells, in the absence of accessory cells, independently of the other lymphokines and within 24 hr of infection. In contradistinction, IFN-gamma secretion is exclusively of T cell origin, is absolutely dependent on the prior elaboration of IL 1 and IL 2, and is maximal 8 days after EBV infection. IL 2 secretion by T cells peaks on day 5 and requires the earlier release of IL 1. Both NK cells and monocytes are a source of IL 1. Secretion of IL 2 and IFN-gamma occurs in the presence of either one of these cell types but not in the absence of both. Antibody against IL 1 blocks EBV-induced IL 2 and IFN-gamma generation, and antibody against IL 2 decreases production of IFN-gamma. Thus, the production of IFN-gamma, the lymphokine that prevents EBV-induced B cell transformation, is the final outcome of a cascade of lymphokine-mediated events that involve interactions between virus-infected B lymphocytes that serve as antigen-presenting cells, NK cells and monocytes as sources of IL 1, and T lymphoblasts. Dysfunctions of any or all of these cell types would be expected to impair the regulation of EBV transformation.  相似文献   

2.
The human cell line K562 was treated with human natural leukocyte interferon (IFN-alpha) and recombinant immune interferon (IFN-gamma). Cell cultures exposed to both types of IFNs displayed a reduced susceptibility to the cytotoxic activity of human PBL (NK activity). While this effect occurred preferentially at high doses of IFN-alpha, as little as 10 U/ml of IFN-gamma caused a marked decrease in susceptibility to NK-cell-mediated lysis. Using a monoclonal antibody against human beta2-microglobulin (beta2M) a low level of specific binding to K562 cells was detected. The binding increased after treatment with IFN-alpha (1.4-fold) and IFN-gamma (1.7-fold). The expression of transferrin receptors (TR) was not changed significantly. A hybrid cell line between K562 and a Burkitt's lymphoma-derived cell line displayed a similar pattern of response to IFN-alpha and IFN-gamma as did K562, when effects on NK susceptibility, beta2M expression, and TR expression were studied. The Burkitt's lymphoma line PUT showed no consistent changes in expression of beta2M and TR. These results demonstrate that IFN-gamma is highly efficient in modulating the NK susceptibility, and the expression of beta2M on K562. The presented data do not support a role for expression of TR as the only property that determines the degree of NK susceptibility, since there was no correlation between NK susceptibility and TR expression among the cell lines tested or when IFN-treated and untreated cells were compared.  相似文献   

3.
Highly purified human large granular (LGL), depleted of any detectable contaminant T and B cells or monocytes, were found to be potent producers in vitro of a soluble B cell growth factor (BCGF) able to sustain proliferation of B cells activated by anti-mu. Activation by lectins (phytohemagglutinin, PHA, concanavalin A, Con A; and pokeweed mitogen, PWM) was required to induce the production of high levels of this BCGF from cultured LGL. Production of BCGF was also detected after the binding of LGL with natural killer (NK)-sensitive (K562) but not with NK-resistant (RL male 1) target cells. In contrast to T cells, LGL did not need the additional presence of accessory cells to reach optimal production of BCGF by 72 hr of culture. The subpopulation of LGL responsible for the production of BCGF had phenotypic characteristics associated with NK cells (3G8+, HNK1+/OKT11+, DR-, OKT3-, Leu-M1-), and separated cells with these markers exerted high levels of NK activity. Selective production of BCGF also was obtained from cytotoxic clones derived from LGL. A partial characterization of the LGL-derived BCGF was performed by gel filtration. BCGF activity was detected in fractions with estimated m.w. of 20,000 and 45,000. The LGL-derived BCGF activity was resistant to reduction with 2-mercaptoethanol and was stable at -20 degrees C for months. Conversely, heating (56 degrees C for 1 hr) or digestion with trypsin greatly reduced the LGL-derived BCGF activity. These findings strongly suggest that LGL including those with NK activity can play an important positive role in the early events of the B cell-mediated immune response.  相似文献   

4.
This laboratory has been investigating IFN-gamma gene expression by highly purified human large granular lymphocytes (LGL) and T cells. We report here that within 1 hr after interleukin 2 (IL 2) treatment of freshly isolated human LGL, IFN-gamma mRNA can be detected, with IFN-gamma protein in the culture medium within 4 to 6 hr of treatment. CD3- Leu-11+ LGL require only a single signal for IFN-gamma production because phytohemagglutinin (PHA), phorbol myristate acetate (PMA), IL 2, or ionomycin can each independently induce IFN-gamma production. In addition, PHA and ionomycin (but not IL 2) show significant synergy with PMA as a stimulus to LGL. In contrast, CD3+ T cells require two stimuli for high levels of IFN-gamma production, and not only are PMA plus ionomycin or PHA synergistic, but in addition, IL 2 and PHA demonstrate some synergy. Furthermore, we have found by fractionation of peripheral blood lymphocytes that IL 2-induced IFN-gamma production is associated with the LGL population and not T cells. These results indicate that with certain stimuli, LGL may be the predominant source of IFN-gamma from peripheral blood lymphocytes.  相似文献   

5.
Interferon (IFN) and IFN inducers are known to boost natural killer (NK) activity in vivo and in vitro. In vivo enhancement of NK activity results from activation of preexisting NK cells as well as from an increased number of large granular lymphocytes (LGL), with a portion of them undergoing cell division. Our study was addressed to analyze the sequence of metabolic events occurring within the LGL population of Fischer rats treated with poly(I:C), as an IFN inducer. The increase in cytotoxic activity and LGL number in the peripheral blood already reached maximal levels by 12 hr after poly(I:C) injection, remained on a plateau 24 to 48 hr later, then slightly decreased on Day 4, and returned to control levels by Day 6. A similar kinetics was observed for RNA synthesis. In contrast DNA synthesis first increased at 24 hr, peaked at 48 hr, then decreased on Day 4, and was not detectable on Day 6. Percoll fractionation resulted in 92-97% of LGL in fraction 1, and cells in this fraction accounted for the increase of cytotoxicity as well as for newly synthesized RNA and DNA. However, LGL recovered on Day 1 or 2 after poly(I:C) stimulation displayed quite heterogeneous morphology, and a number of mitotic configurations were seen on Day 2 within the LGL population. Our results indicate that the boosting of NK activity by poly(I:C) is always associated with an increase in LGL numbers, the enhanced lytic capacity is associated in vivo with new RNA synthesis by the NK cells, and only in a later phase NK cell proliferation may account for the increase in LGL numbers.  相似文献   

6.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

7.
The repeated ip injection of highly purified recombinant IFN-gamma or IL-2 resulted in a local increase in peritoneal NK activity. This increase in lytic activity was paralleled by increases in the number of peritoneal leukocytes reacting with a rat monoclonal antibody directed against the NK cell-associated surface antigen LGL-1. LGL-1 reacts specifically with the majority of murine NK cells in BALB/c and C57BL/6 mice. A single injection of IFN-gamma induced more peritoneal NK activity at 24 hr than IL-2 on a protein basis. Both cytokines induced increases in the number of LGL-1+ peritoneal cells by 24 hr after injection. Simultaneous injection of suboptimal amounts of IFN-gamma (100 U) and IL-2 (10,000 U) resulted in a significant augmentation of peritoneal NK activity over that observed with either cytokine alone. Also, the peritoneal NK activity generated in response to ip injection of high doses of IL-2 (100,000 U) could be dramatically reduced by simultaneous injection of a neutralizing monoclonal antibody to IFN-gamma. Administration of IFN-gamma 1 day prior to IL-2 resulted in a significant augmentation of the NK activity above that observed with the individual cytokines. In contrast, injection of IL-2 prior to IFN-gamma did not enhance NK activity over that observed with the individual cytokines. Both cytokines must be injected ip for the complementary effects of IFN-gamma and IL-2 on peritoneal NK activity to occur. In contrast, in vitro incubation of peritoneal leukocytes with IFN-gamma resulted in neither a significant enhancement of NK lytic activity nor an increase in the number of LGL-1+ cells. In vitro treatment of peritoneal leukocytes with IL-2 always resulted in significant augmentation of NK lytic activity in the absence of any increase in the number of LGL-1+ cells. These data are consistent with the hypothesis that the local release of IFN-gamma increases peritoneal NK activity by promoting the influx of blood-borne LGL-1+ NK cells from other sites. In contrast, low doses of IL-2 augment the lytic activity of local resident NK cells, whereas high doses of this cytokine induce both an activation of local NK cells and emigration of LGL-1+ NK cells from other sites due to the endogenous generation of IFN-gamma within the peritoneal cavity. Therefore, the local release of IFN-gamma may play an important role in regulating NK cell infiltration in vivo.  相似文献   

8.
Human natural killer (NK) cell activity can be augmented by pretreatment with partially purified preparations of human interferon (IF). Studies have now been performed to determine the metabolic processes required for and involved in spontaneous NK activity and augmentation of cytotoxicity. A 4-hr 51Cr release cellular cytotoxicity assay was used to measure the NK activity, and peripheral blood leukocyte cells (PBL) were treated with: a) x-ray or mitomycin C; b) actinomycin D; or c) emetine, cycloheximide, pactamyhcin, or puromycin to assess the roles of DNA, RNA, and protein synthesis, respectively, in spontaneous NK activity and in boosting by IF. Prolonged incubation (18 hr) of PBL after blockage of synthesis of DNA almost completely abrogated NK activity; however, NK activity could be partially or totally restored to these populations by incubation of the effector cells for 1 hr at 37 degrees C with IF. Blockage of DNA synthesis for 1 hr had no effect on spontaneous NK activity or on boosting by IF. Inhibition of RNA synthesis also had no effect on spontaneous NK activity. Treatment of PBL with actinomycin before exposure to IF prevented boosting, but treatment with the RNA synthesis inhibitor after boosting with IF for 5 to 6 hr no longer had an appreciable effect on cytotoxicity. The effect of protein synthesis inhibitors on spontaneous NK activity was dependent on the inhibitor selected. Emetine and puromycin totally abrogated spontaneous NK activity at concentrations of inhibitor that blocked 3H-leucine incorporation 90% or more. In contrast, cycloheximide and pactamycin had only minimal effects on spontaneous NK activity but totally abrogated the boosting of IF.  相似文献   

9.
The role of protein kinase C (PK-C) in the early metabolic events involved in human natural killer (NK) cell activation has been studied through the action of PK-C-specific activators and inhibitors. Highly purified human large granular lymphocytes (LGL) were treated for 1 hr with the diacylglycerol analog 1-oleoyl-2-acetyl glycerol (OAG) (10(-4)-10(-5) g/ml) or with 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-8)-10(-10) g/ml), both specific activators of PK-C. Both these agents consistently increased NK activity against K562 target cells. Suboptimal doses of either OAG or TPA also synergized with Ca2+ ionophores to augment spontaneous cytotoxic activity. Pretreatment of LGL with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrocloride (H7) (5-40 microM), a potent PK-C inhibitor, greatly reduced NK activity in a time- and dose-dependent fashion. By contrast, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride (HA 1004), a potent cAMP- and cGMP-dependent PK inhibitor with almost no effect on PK-C, marginally reduced NK activity. Moreover, almost complete NK activity inhibition was observed when H7 (10 microM), but not HA 1004 (50 microM), was present in the NK assay. Finally, 48 hr stimulation of LGL with TPA (10(-6) g/ml), a treatment able to inactivate most of the PK-C cellular pool, almost completely abrogated NK activity. This functional evidence was supported by phosphorylation of several endogenous substrates which occurs within 5 min in TPA-treated LGL. Two proteins of 70 and 56 kDa have been identified as major PK-C substrates, together with other phosphorylated proteins with MW ranging from 177 to 43 kDa. H7, but not HA 1004, almost completely inhibited the TPA-induced phosphorylation of all of these proteins in the NK cells. These data strongly suggest that selective activation of PK-C plays an essential role in the mechanisms of NK cell activation.  相似文献   

10.
The effects of IL-7 on the generation of cytolytic human peripheral blood lymphocytes (PBL) were investigated. Induction of T-cell pore-forming protein (PFP) mRNA and cytotoxic potential by IL-7 was both slow and minor compared with that observed in IL-2-cultured T cells. IL-7 and suboptimal doses of IL-2 (10 U/ml) were found to costimulate PFP mRNA expression and cytotoxic potential in T cells. Clearly, however, both IL-7 and IL-2/IL-7 induced the PFP gene expression and cytotoxic potential of CD8+ T cells and not CD4+ T cells. In addition, neither monoclonal antibodies (mAb) to the p55 or p75 IL-2-receptor subunits had any effect upon IL-7 induction of CD8+ T-cell cytotoxicity, indicating that IL-7 induction of cytotoxic CD8+ T cells was IL-2 independent. IL-7 induction of CD3- large granular lymphocyte (LGL) and PB gamma delta T-cell cytotoxicity was also delayed and reduced compared with that effected by IL-2. IL-7 (10 or 1000 U/ml, 72 hr) enhanced the NK and LAK cytotoxic of LGL and PB gamma delta T cells. By contrast IL-7 or IL-2 augmented the redirected cytotoxic potential of PB gamma delta T cells, but not that of LGL, and neither lymphokine had any effect on constitutive PFP mRNA expression in either lymphocyte subset. In addition, IL-7 induction of LGL IFN-gamma production was weak and delayed compared with that effected by IL-2 and neither IL-2 nor IL-7 stimulated IFN-gamma production in PB gamma delta T cells. Therefore, overall the effects of IL-2 and IL-7 on various cytotoxic human PBL were qualitatively similar, but quantitatively and kinetically different.  相似文献   

11.
Corynebacterium parvum-activated macrophages (M phi), purified by adherence, were cytotoxic for B16 melanoma cells maintained in vitro. Pretreatment of the melanoma cells for 18 hr with interferon-alpha/beta or -gamma (IFN-alpha/beta or -gamma) caused a reduced susceptibility of the B16 cells to M phi-mediated cytotoxicity. The IFN-induced protective effect of B16 cells from cytotoxic M phi was found to be dose dependent. In addition, IFN-gamma was more protective than IFN-alpha/beta. The protective effect observed with partially purified IFN was reproduced by using highly purified IFN-alpha/beta or recombinant IFN-gamma. Monoclonal antibodies to IFN-gamma neutralized the protective effect provided by IFN-gamma. These results show that the susceptibility of a tumor cell line to killing by activated M phi can be altered by IFN pretreatment.  相似文献   

12.
A model for monitoring the accumulation of natural killer cell/large granular lymphocytes (NK/LGL) at a site of virus replication was studied by using mice infected i.p. with either lymphocytic choriomeningitis virus (LCMV), murine cytomegalovirus (MCMV), mouse hepatitis virus (MHV), Pichinde virus, or vaccinia virus. An i.p. but not i.v. infection resulted in a localized increase in NK/LGL cell number (a fourfold to greater than 20-fold increase) and augmentation (a 10- to 20-fold increase) of NK cell activity associated with virus-induced peritoneal exudate cell (PEC) populations. An increase in NK/LGL cell number was detected as early as 12 hr postinfection (p.i.) and peaked at 3 days p.i. with MHV. The initial LGL recruited into the peritoneal cavity at 1 to 3 days p.i. were nonadherent to plastic and were demonstrated to have an NK cell phenotype: asialo GM1+, Thy-1.2 +/-, Lyt-2.2-, and J11d-. The peak number of LGL appeared at 7 days after infection with the NK cell-resistant virus, LCMV. This LGL population had been previously demonstrated to contain cytotoxic T lymphocyte/LGL (CTL/LGL) as well as NK/LGL. During an MHV infection the number of LGL decreased between days 3 and 7 p.i., suggesting that the second wave of CTL/LGL was absent. These findings may explain the absence of a good MHV-CTL model. Virus-induced, activated NK/LGL responded to chemotactic signals by migrating in a unidirectional manner across two 5-microns pore size polycarbonate filters during 7 hr in vitro chemotaxis assays. Wash-out fluid obtained from the peritoneal cavity contained chemotactic activity for NK/LGL as well as for other cell types. We conclude that production and/or release of chemotactic factors at sites of virus replication are at least partially responsible for the accumulation of NK/LGL at these sites.  相似文献   

13.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/-) mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/-) mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.  相似文献   

14.
The biochemical mechanisms involved in the activation and killing of tumor targets by large granular lymphocytes (LGL) have not yet been clearly defined. This laboratory has investigated these processes by analyzing the effects of protein kinase C (PKC) inhibitors (1-(5-isoquinolinesulfonyl)2-methyl-piperazine-dihydrochloride and retinol) on LGL cytotoxicity and IFN-gamma production. We now report that PKC inhibitors block the LGL functions of 1) NK activity, 2) IFN-gamma production, and 3) LAK activity induced by IL-2. Complete inhibition of cytotoxic activity occurs rapidly because only 2.5 h treatment of the LGL with the inhibitors was required. However, the inhibition of NK activity by the PKC inhibitors could be reversed by IL-2 or the synthetic diacylglycerol, L-gamma-1-oleyl-2-acetol-sn-3-glycerol (OAG), but not by IFN-alpha. The reversal of inhibition observed with OAG indicates that, in these studies, (1-(5-isoquinolinesulfonyl)2-methyl-piperazine-dihydrochloride is inhibiting PKC activity and not the activity of other cellular kinases. Furthermore, inhibition of LGL functional activity with PGE2 could not be reversed with OAG, supporting the contention that PG inhibition of NK activity is mediated by a pathway that does not directly involve PKC. These results indicate, in addition to IL-2-mediated events, that basal NK activity is under PKC regulatory control.  相似文献   

15.
Human cell lines were isolated that express the V protein of either simian virus 5 (SV5) or human parainfluenza virus type 2 (hPIV2); the cell lines were termed 2f/SV5-V and 2f/PIV2-V, respectively. STAT1 was not detectable in 2f/SV5-V cells, and the cells failed to signal in response to either alpha/beta interferons (IFN-alpha and IFN-beta, or IFN-alpha/beta) or gamma interferon (IFN-gamma). In contrast, STAT2 was absent from 2f/PIV2-V cells, and IFN-alpha/beta but not IFN-gamma signaling was blocked in these cells. Treatment of both 2f/SV5-V and 2f/PIV2-V cells with a proteasome inhibitor allowed the respective STAT levels to accumulate at rates similar to those seen in 2fTGH cells, indicating that the V proteins target the STATs for proteasomal degradation. Infection with SV5 can lead to a complete loss of both phosphorylated and nonphosphorylated forms of STAT1 by 6 h postinfection. Since the turnover of STAT1 in uninfected cells is longer than 24 h, we conclude that degradation of STAT1 is the main mechanism by which SV5 blocks interferon (IFN) signaling. Pretreatment of 2fTGH cells with IFN-alpha severely inhibited both SV5 and hPIV2 protein synthesis. However, and in marked contrast, pretreatment of 2fTGH cells with IFN-gamma had little obvious effect on SV5 protein synthesis but did significantly reduce the replication of hPIV2. Pretreament with IFN-alpha or IFN-gamma did not induce an antiviral state in 2f/SV5-V cells, indicating either that the induction of an antiviral state is completely dependent on STAT signaling or that the V protein interferes with other, STAT-independent cell signaling pathways that may be induced by IFNs. Even though SV5 blocked IFN signaling, the addition of exogenous IFN-alpha to the culture medium of 2fTGH cells 12 h after a low-multiplicity infection with SV5 significantly reduced the subsequent cell-to-cell spread of virus. The significance of the results in terms of the strategy that these viruses have evolved to circumvent the IFN response is discussed.  相似文献   

16.
Normal as well as transformed epidermal cells (EC) have recently been reported to produce a cytokine--EC-derived thymocyte-activating factor (ETAF), which according to its biologic as well as biochemical properties is indistinguishable from macrophage-derived interleukin 1 (IL 1). In the present study, the effect of supernatants (SN) derived from normal EC and a human squamous carcinoma cell (SCC) line were tested for their effects on natural killer (NK) cell activity. EC- as well as SCC-derived SN were able to augment in vitro NK cell activity of peripheral blood lymphocytes against K 562 cells. In contrast, adherent cell-derived, IL 1-containing SN did not affect NK cell activity. Upon high-pressure liquid chromatography (HPLC) gel filtration, ETAF and the EC-derived NK cell activity-augmenting factor (ENKAF) exhibited a similar m.w. However, by using reverse-phase HPLC, ETAF and ENKAF eluted as distinct peaks of activity, indicating that SCC cell-derived ENKAF is different from ETAF. Furthermore, ENKAF does not contain interleukin 2 (IL 2) or interferon (IFN) activity. The enhancement of NK cell activity was dose dependent and evident after 20 hr of preincubation of effector cells. Pretreatment of target cells with ENKAF did not affect the susceptibility of the target cells. The NK activity of large granular lymphocytes (LGL) purified by discontinuous Percoll gradient centrifugation and further depleted of high-affinity sheep erythrocyte rosetting cells was enhanced by ENKAF. In contrast, no NK cell activity was expressed by LGL-depleted T cell populations before or after treatment with ENKAF. In a single cell cytotoxicity assay in agarose, the number of lymphocyte binding to K 562 was not affected by ENKAF, but the frequency of dead conjugated target cells and presumably of active killer cells was increased by pretreatment with ENKAF. Additional incubation of LGL with ETAF did not further increase ENKAF-mediated augmentation of NK activity. In contrast to ETAF, ENKAF was not chemotactic for polymorphonuclear leukocytes. These results indicate that normal as well as transformed EC release a unique cytokine--ENKAF--which augments NK cell activity of LGL but is distinct from ETAF, IL 2, and IFN.  相似文献   

17.
Muramyl dipeptide (MDP) is a bacterial pathogen associated molecular pattern derived from both Gram-positive and -negative bacteria. It is a specific ligand for nuclear oligomerization domain 2, a pattern recognition receptor best characterized for its role in immunosurveillance in the gut. In this study, we demonstrate that human peripheral blood NK cells express nuclear oligomerization domain 2 and respond to MDP. NK cells naturally internalize MDP leading to direct cell activation, including signaling through NFkappaB: characterized by p50/p65 heterodimers at early stimulations times and sustained activation of p50 homodimers. Moreover, MDP synergizes with IFN-alpha and IL-12 to activate NK cells and stimulate IFN-gamma secretion, suggesting a role for accessory cells in induction of an optimal NK cell response. Although IL-12 costimulation leads to a greater IFN-gamma response by NK cells, higher levels of CD69 in response to MDP are induced in the presence of IFN-alpha, suggesting that different pathogen-induced cytokine profiles will affect downstream NK cell responses. In contrast, MDP alone or in combination with either IFN-alpha or IL-12 only poorly increases NK cell cytotoxicity. In summary, this report identifies MDP as a bacterial pathogen associated molecular pattern that activates human NK cells.  相似文献   

18.
Human recombinant interleukin 2 (hrIL-2) was demonstrated in vitro to be chemotactic for mouse large granular lymphocytes (LGL) activated in vivo by virus infection. Peritoneal exudate cells harvested from virus-infected mice were used as a source of LGL. LGL collected from mouse hepatitis virus-infected mice at 3 days postinfection were a source for NK 1.1 positive natural killer (NK)/LGL. LGL collected from mice treated with antiserum to gangliotetraosylceramide and infected with lymphocytic choriomeningitis virus for 7 days were used as a source for Lyt-2 positive cytotoxic T lymphocytes (CTL)/LGL. Both NK/LGL and CTL/LGL responded chemotactically to hrIL-2, purified IFN-beta, and to crude cell-free washout fluids collected from the peritoneal cavity of virus-infected mice. hrIL-2 had chemotactic activity for virus-elicited granular and agranular lymphocytes but did not attract the contaminating macrophages, in contrast to IFN-beta, which displayed chemotactic activity for virus-elicited granular and agranular lymphocytes as well as macrophages. The migration to hrIL-2 was inhibited by a monoclonal antibody (7D4) to the IL-2 receptor, but treatment with 7D4 did not affect migration in response to IFN-beta. Microscopic examination of Wright's-Giemsa-stained migrated NK/LGL and CTL/LGL revealed that the majority of migrated LGL in either LGL population had a blast cell morphology (enlarged cells with rich basophilic cytoplasm). The frequency of cells bearing the LGL morphology within the virus-elicited nonadherent peritoneal exudate cell population was on incubation in vitro, stabilized by either hrIL-2 or IFN-beta. These data suggest that another important immunomodulating function of IL-2 may be to attract activated NK/LGL and CTL/LGL to sites of inflammation.  相似文献   

19.
Between 5 and 20% of normal human lymphocytes were found to synthesize interferon-gamma (IFN-gamma) in primary cultures with recombinant interleukin-2 (rIL-2). After 22 hr, IFN-gamma-producing cells included CD5+ T lymphocytes, CD16+ large granular lymphocytes (LGL), and a population of CD5-, CD16- blast cells. Only a small proportion (0-7%) of IFN-gamma-synthesizing cells expressed HLA-DR. The production of IFN-gamma by all rIL-2-responding lymphocyte subsets was shown to require the presence of DR+ accessory cells, probably including nonadherent, esterase-negative monocytes and/or dendritic cells. Accessory cell function in lymphocyte preparations depleted of DR+ cells, or in purified (greater than or equal to 95%) suspensions of LGL, was fully replaced either by addition of 2% autologous, adherent monocytes or by monocyte culture supernatant. The activity of monocyte supernatant was greatly reduced by treatment with antiserum specific for human interleukin-1 beta (IL-1 beta), although a combination of rIL-1 beta and rIL-2 failed to stimulate IFN-gamma production in DR- lymphocytes. These results indicate that rIL-2-induced IFN-gamma synthesis in both T cells and LGL requires the synergistic activity of IL-1, and possibly of one or more other monokines, as yet unidentified.  相似文献   

20.
Highly enriched populations of human large granular lymphocytes (LGL), natural killer (NK) cells, and T cells were obtained from low and high density fractions, respectively, of discontinuous Percoll gradients. The NK cells were composed of 75 to 90% LGL, with the majority of the contaminating cells being monocytes. The T cells were greater than 95% OKT3+. The proliferative and cytotoxic progenitors in both fractions were examined by using a limiting dilution assay with interleukin 2 (IL 2) from four sources: 1) crude supernatant of a gibbon lymphoma (MLA-144), 2) purified (150,000-fold) MLA-144 IL 2, 3) partially purified human IL 2, and 4) purified recombinant human IL 2. The proliferative capacity was measured at day 7 by [3H]thymidine incorporation, whereas the progenitors of cells with NK-like activity were evaluated by assessing cytotoxic activity against K562 cells at day 8 in a 4-hr 51Cr-release assay. The frequency of proliferative progenitors among T cells was approximately 1/5 and was approximately 1/60 with LGL. Titration of the highly purified IL 2 preparation demonstrated that LGL proliferated with as little as 2 U of IL 2. The frequency of detectable cytotoxic progenitors in the LGL population, however, fell sharply when less than 40 U of IL 2 were employed. The T cells failed to demonstrate cytotoxic activity against the NK-susceptible target cells at any concentration of IL 2 tested. The IL 2 preparations also were examined for their ability to directly and rapidly enhance the cytotoxic activity of highly purified NK cells. All four preparations of IL 2 enhanced the cytotoxic activity of LGL without any detectable accessory requirement after incubation for as little as 6 hr, even though the MLA-144 IL 2 preparations were devoid of detectable interferons (IFN). These data indicate that IL 2 has dual effects on NK cells, regulating their activity was well as promoting their proliferation. Collectively, these results demonstrate that highly purified IL 2, devoid of other detectable lymphokines, is capable of supporting the growth of human NK cells and augmenting their in vitro activity. In parallel experiments, these same IL 2 preparations were quite active in causing the proliferation of T lymphocytes, clearly demonstrating a role of IL 2 in promoting the proliferation of NK cells as well as T cells. The mechanism of IL 2 boosting appears to be a direct interaction with LGL, resulting in the production of IFN gamma.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号