首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of low concentrations (0.2--2.0 mM) of EGTA to rabbit skeletal muscle G-actin in the presence of ATP caused increase in viscosity. The effect is probably due to chelation of Ca2+. EGTA-polymerized actin was sedimented in the ultracentrifuge as a pellet which could be depolymerized in the presence of Ca2+ and then repolymerized. Electron microscopy indicated that formation of filamentous actin which appears to be somewhat more flexible than F-actin obtained by polymerization with KCl. The EGTA-polymerized actin was dissociated by DNAase I faster than KCl-polymerized actin. F-Actin can thus be stable also in very low ionic strength media if Ca2+ is removed whereas for G-actin to be the only form of the protein in such media, micromolar concentrations of Ca2+ must be present.  相似文献   

2.
Approximately 8-10 mg of highly actin-activatable, CA2+-sensitive Acanthamoeba myosin II can be isolated in greater than 98% purity from 100 g of amoeba by the new procedure described in detail in this paper. The enzyme isolated by this procedure can be activated by actin because its heavy chains are not fully phosphorylated (Collins, J. H., and Korn, E. D. (1980) J. Biol Chem. 255, 8011-8014). We now show that Acanthamoeba myosin II Mg2+-ATPase activity is more highly activated by Acanthamoeba actin than by muscle actin. Also, actomyosin II ATPase is inactive at concentrations of free Mg2+ lower than about 3 mM and fully active at Mg2+ concentrations greater than 4 mM. Actomyosin II Mg2+-ATPase activity is stimulated by micromolar Ca2+ when assayed over the narrow range of about 3-4 mM Mg2+ but is not affected by Ca2+ at either lower or higher concentrations of Mg2+. The specific activity of te actomyosin II Mg2+-ATPase also increases with increasing concentrations of myosin II when the free Mg2+ concentration is in the range of 3-4 mM but is independent of the myosin II concentration at lower or higher concentrations of Mg2+ . This marked effect of the Mg2+ concentration on the Ca2+-sensitivity and myosin concentration-dependence of th specific activity of actomyosin II ATPase activity does not seem to be related to the formation of myosin filaments, and to be related to the formation of myosin filaments, and myosin II is insoluble only at high concentrations of free Mg2+ (6-7 mM) were neither of these effects is observed. Also, the Mg2+ requirements for actomyosin II ATPase activity and myosin II insolubility can be differentially modified by EDTA and sucrose.  相似文献   

3.
Substoichiometric concentrations of cytochalasin D inhibited the rate of polymerization of actin in 0.5 mM MgCl2, increased its critical concentration and lowered its steady state viscosity. Stoichiometric concentrations of cytochalasin D in 0.5 mM MgCl2 and even substoichiometric concentrations of cytochalasin D in 30 mM KCl, however, accelerated the rate of actin polymerization, although still lowering the final steady state viscosity. Cytochalasin B, at all concentrations in 0.5 mM MgCl2 or in 30 mM KCl, accelerated the rate of polymerization and lowered the final steady state viscosity. In 0.5 mM MgCl2, cytochalasin D uncoupled the actin ATPase activity from actin polymerization, increasing the ATPase rate by at least 20 times while inhibiting polymerization. Cytochalasin B had a very much lower stimulating effect. Neither cytochalasin D nor B affected the actin ATPase activity in 30 mM KCl. The properties of cytochalasin E were intermediate between those of cytochalasin D and B. Cytochalasin D also stimulated the ATPase activity of monomeric actin in the absence of MgCl2 and KCl and, to a much greater extent, stimulated the ATPase activity of monomeric actin below its critical concentration in 0.5 mM MgCl2. Both above and below its critical concentration and in the presence and absence of cytochalasin D, the initial rate of actin ATPase activity, when little or no polymerization had occurred, was directly proportional to the actin concentration and, therefore, apparently was independent of actin-actin interactions. To rationalize all these data, a working model has been proposed in which the first step of actin polymerization is the conversion of monomeric actin-bound ATP, A . ATP, to monomeric actin-bound ADP and Pi, A* . ADP . Pi, which, like the preferred growing end of an actin filament, can bind cytochalasins.  相似文献   

4.
R J Heaslip  S Chacko 《Biochemistry》1985,24(11):2731-2736
There are conflicting reports on the effect of Ca2+ on actin activation of myosin adenosine-triphosphatase (ATPase) once the light chain is fully phosphorylated by a calcium calmodulin dependent kinase. Using thiophosphorylated gizzard myosin, Sherry et al. [Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., & Hartshorne, D. J. (1978) Biochemistry 17, 4417-4418] observed that the actin activation of ATPase was not inhibited by the removal of Ca2+. Hence, it was suggested that the regulation of actomyosin ATPase activity of gizzard myosin by calcium occurs only via phosphorylation. In the present study, phosphorylated and thiophosphorylated myosins were prepared free of kinase and phosphatase activity; hence, the ATPase activity could be measured at various concentrations of Ca2+ and Mg2+ without affecting the level of phosphorylation. The ATPase activity of myosin was activated either by skeletal muscle or by gizzard actin at various concentrations of Mg2+ and either at pCa 5 or at pCa 8. The activation was sensitive to Ca2+ at low Mg2+ concentrations with both actins. Tropomyosin potentiated the actin-activated ATPase activity at all Mg2+ and Ca2+ concentrations. The calcium sensitivity of phosphorylated and thiophosphorylated myosin reconstituted with actin and tropomyosin was most pronounced at a free Mg2+ concentration of about 3 mM. The binding of 125I-tropomyosin to actin showed that the calcium sensitivity of ATPase observed at low Mg2+ concentration is not due to a calcium-mediated binding of tropomyosin to F-actin. The actin activation of both myosins was insensitive to Ca2+ when the Mg2+ concentration was increased above 5 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The influence of Ca2+ on the enzymatic and physical properties of smooth muscle myosin was studied. The actin-activated ATPase activity of phosphorylated gizzard myosin and heavy meromyosin is higher in the presence of Ca2+ than in its absence, but this effect is found only at lower MgCl2 concentrations. As the MgCl2 concentration is increased, Ca2+ sensitivity is decreased. The concentration of Ca2+ necessary to activate ATPase activity is higher than that required to saturate calmodulin. The similarity of the pCa dependence of ATPase activity and of Ca2+ binding to myosin and the competition by Mg2+ indicate that these effects involved the Ca2+-Mg2+ binding sites of gizzard myosin. For the actin dependence of ATPase activity of phosphorylated myosin at low concentrations of MgCl2, both Vmax and Ka are influenced by Ca2+. The formation of small polymers by phosphorylated myosin in the presence of Ca2+ could account for the alteration in the affinity for actin. For the actin dependence of phosphorylated heavy meromyosin at low MgCl2 concentrations, Ca2+ induces only an increase in Vmax. To detect alterations in physical properties, two techniques were used: viscosity and limited papain hydrolysis. For dephosphorylated myosin, 6 S or 10 S, Ca2+-dependent effects are not detected using either technique. However, for phosphorylated myosin the decrease in viscosity corresponding to the 6 S to 10 S transition is shifted to lower KCl concentrations by the presence of Ca2+. In addition, a Ca2+ dependence of proteolysis rates is observed with phosphorylated myosin but only at low ionic strength, i.e. under conditions where myosin assumes the folded conformation.  相似文献   

6.
Chicken gizzard caldesmon causes up to 40% inhibition of Mg2+-ATPase activity of rabbit skeletal muscle actomyosin. In the presence of chicken gizzard tropomyosin this inhibition is significantly increased, reaching a maximum (around 80%) at a molar ratio of caldesmon to actin monomer of 1 to 10-13. The inhibition of actomyosin ATPase takes place over a wide pH range (from 6.0 to 8.0) but is decreased with an increase in KCl and MgCl2 concentrations. Caldesmon, in the range of caldesmon/ actin ratios within which it inhibits actomyosin ATPase, forms bundles of parallelly aligned actin filaments. Calmodulin in the presence of Ca2+ dissociates these bundles and restrains the inhibition of actomyosin ATPase, provided that it is used at a high molar excess over caldesmon.  相似文献   

7.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

8.
Caldesmon, calmodulin-, and actin-binding protein of chicken gizzard did not affect the process of polymerization of actin induced by 0.1 M KCl. Caldesmon binds to F-actin, thus inhibiting the gelation action of actin binding protein (ABP; filamin). Low shear viscosity and flow birefringence measurements revealed that in a system of calmodulin, caldesmon, ABP, and F-actin, gelation occurs in the presence of micromolar Ca2+ concentrations, but not in the absence of Ca2+. Electron microscopic observations showed the Ca2+-dependent formation of actin bundles in this system. These results were interpreted by the flip-flop mechanism: in the presence of Ca2+, a calmodulin-caldesmon complex is released from actin filaments on which ABP exerts its gelating action. On the other hand, in the absence of Ca2+, caldesmon remains bound to actin filaments, thus preventing the action of ABP.  相似文献   

9.
Myosin was isolated from amoebae of Physarum polycephalum and compared with myosin from plasmodia, another motile stage in the Physarum life cycle. Amoebal myosin contained heavy chains (Mr approximately 220,000), phosphorylatable light chains (Mr 18,000), and Ca2+-binding light chains (Mr 14,000) and possessed a two-headed long-tailed shape in electron micrographs after rotary shadow casting. In the presence of high salt concentrations, myosin ATPase activity increased in the following order: Mg-ATPase activity less than K-EDTA-ATPase activity less than Ca-ATPase activity. In the presence of low salt concentrations, Mg-ATPase activity was activated approximately 9-fold by skeletal muscle actin. This actin-activated ATPase activity was inhibited by micromolar levels of Ca2+. Amoebal myosin was indistinguishable from plasmodial myosin in ATPase activities and molecular shape. However, the heavy chain and phosphorylatable light chains of amoebal myosin could be distinguished from those of plasmodial myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, and immunological studies, suggesting that these are different gene products. Ca2+-binding light chains of amoebal and plasmodial myosins were found to be identical using similar criteria, supporting our hypothesis that the Ca2+-binding light chain plays a key role in the inhibition of actin-activated ATPase activity in Physarum myosins by micromolar levels of Ca2+.  相似文献   

10.
Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.  相似文献   

11.
We previously reported that the activity of the (Ca2+ + Mg2+)-dependent adenosine triphosphatase (ATPase) of the human erythrocyte membrane is inhibited by micromolar or nanomolar concentrations of cyclic AMP. Our further studies have now indicated that the inhibition of (Ca2+ + Mg2+)-dependent phosphohydrolase activity requires the participation of a membrane-associated cyclic AMP-dependent protein kinase and a membrane-associated protein substrate that is distinct from the ATPase itself. We have furthermore, identified a 20 kDa membrane protein which undergoes phosphorylation that is promoted by micromolar, but not millimolar, concentrations of cyclic AMP and which, when phosphorylated, undergoes dephosphorylation that is promoted by Ca2+. We suggest that this membrane component can participate in the modulation of the activity of the (Ca2+ + Mg2+)-dependent ATPase of the human erythrocyte.  相似文献   

12.
Calcium ions produce a 3-4-fold stimulation of the actin-activated ATPase activities of phosphorylated myosin from bovine pulmonary artery or chicken gizzard at 37 degrees C and at physiological ionic strengths, 0.12-0.16 M. Actins from either chicken gizzard or rabbit skeletal muscle stimulate the activity of phosphorylated myosin in a Ca2+-dependent manner, indicating that the Ca2+ sensitivity involves myosin or a protein associated with it. Partial loss of Ca2+ sensitivity upon treatment of phosphorylated gizzard myosin with low concentrations of chymotrypsin and the lack of any change on similar treatment of actin supports the above conclusion. Although both actins enhance ATPase activity, activation by gizzard actin exhibits Ca2+ dependence at higher temperatures or lower ionic strengths than does activation by skeletal muscle actin. The Ca2+ dependence of the activity of phosphorylated heavy meromyosin is about half that of myosin and is affected differently by temperature, ionic strength and Mg2+, being independent of temperature and optimal at lower concentrations of NaCl. Raising the concentration of Mg2+ above 2-3 mM inhibits the activity of heavy meromyosin but stimulates that of myosin, indicating that Mg2+ and Ca2+ activate myosin at different binding sites.  相似文献   

13.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

14.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

15.
Chicken gizzard filamin has been digested with purified Ca2+-activated protease. The subunits of (Mr = 250,000) of the protein are cleaved asymmetrically into two fragments, heavy merofilamin, Mr = 240,000, and light merofilamin, Mr = 9,500. Digestion is complete at substrate to enzyme ratios of 100:1 and requires Ca2+ concentrations in excess of 0.3 mM. Heavy merofilamin binds to F-actin as evidenced by cosedimentation with F-actin, by direct observation under the electron microscope, and by its ability to inhibit actin activation of heavy meromyosin ATPase. Heavy merofilamin does not form a gel when mixed with actin, except at very low concentrations of KCl. Thus, actin binding and gelation are separable activities of filamin. We speculate that Ca2+-stimulated proteolysis may play a role in the regulation of actin-filamin interactions.  相似文献   

16.
ATPase activity in highly purified rat liver lysosome preparations was evaluated in the presence of other membrane cellular ATPase inhibitors, and compared with lysosome ATP-driven proton translocating activity. Replacement of 5 mM Mg2+ with equimolar Ca2+ brought about a 50% inhibition in divalent cation-dependent ATPase activity, and an 80% inactivation of ATP-linked lysosomal H+ pump activity. In the presence of optimal concentrations of Ca2+ and Mg2+, ATPase activity was similar to that seen in an Mg2+ medium. Mg2+-dependent ATPase activity was greatly inhibited (from 70 to 80%) by the platinum complexes; cis-didimethylsulfoxide dichloroplatinum(II) (CDDP) at approximately 90 microM and cis-diaminedichloroplatinum(II) at twofold higher concentrations. Less inhibition, about 30 and 45%, was obtained with N,N'-dicyclohexylcarbodiimide and N-ethylmaleimide, and the maximal effect occurred in the 50-100 microM and 0.1-1.5 mM ranges, respectively. The concentration dependence of inhibition by the above drugs was determined for both proton pumping and ATPase activities, and half-maximal inhibition concentration of each activity was found at nearly similar values. A micromolar concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented ATP from setting up a pH gradient across the lysosomal membranes, but stimulated Mg2+-ATPase activity significantly. ATPase activity in Ca2+ medium was also inhibited by CDDP and stimulated by FCCP, but both effects were two- to threefold less than those observed in Mg2+ medium. FCCP failed to stimulate ATPase activity in a CDDP-supplemented medium, thus suggesting that the same ATPase activity fraction was sensitive to both CDDP and FCCP. Mg2+-ATPase activity, like the proton pump, was anion dependent. The lowest activity was recorded in a F-medium, and increased in the order of F- less than SO2-4 less than Cl- approximately equal to Br-. The CDDP-sensitive ATPase activity observed, supported by Mg2+ and less so by Ca2+, may be related to lysosome proton pump activity.  相似文献   

17.
It was shown that substoichiometric concentrations of chaetoglobosin J, one of the fungal metabolites belonging to cytochalasins, inhibited the elongation at the barbed end of an actin filament. Stoichiometric concentrations of chaetoglobosin J decreased both the rate and the extent of actin polymerization in the presence of 75 mM KCl, 0.2 mM ATP and 10 mM Tris-HCl buffer at pH 8.0 and 25 degrees C. In contrast, stoichiometric concentrations of cytochalasin D accelerated actin polymerization. Chaetoglobosin J slowly depolymerized F-actin to G-actin until an equilibrium was reached. Analyses by a number of different methods showed the increase of monomer concentration at equilibrium to depend on chaetoglobosin J concentrations. F-actin under the influence of stoichiometric concentrations of chaetoglobosin J only slightly activated the Mg2+-enhanced ATPase activity of myosin at low ionic strength. It is suggested that when the structure of the chaetoglobosin-affected actin filaments is modified, the equilibrium is shifted to the monomer side, and the interaction with myosin is weakened.  相似文献   

18.
Characterization of human erythrocyte cytoskeletal ATPase   总被引:2,自引:0,他引:2  
Human erythrocyte cytoskeletal ATPase was extracted with 0.2 mM ATP (pH 8.0) from Triton X-100 treated ghosts. The ATPase fraction contained mainly spectrin, actin, and band 4.1. When the ATPase fraction was applied to a Sepharose 4B column, 90% of the ATPase activity was recovered in a spectrin, actin, and band 4.1 complex fraction and none was detected in the spectrin fraction. A specific activity of the complex ATPase was 60-120 nmol/(mg protein X h). No ATPase activity was detected in the presence of EDTA. The presence of magnesium in the incubation medium was essential for the ATPase activity. The activity was activated by KCl and was almost completely inhibited by 10(-5) M free calcium in the presence of 0.2 mM MgCl2. The Ki for Ca2+ was 7 X 10(-7) M. Phalloidin and DNase 1, which affect actin, inhibited this K,Mg-ATPase activity by 95%, but cytochalasin B did not inhibit it. N-Ethylmaleimide activated the ATPase 1.6-fold. The order of affinity for nucleotides was ATP greater than ITP greater than CTP, ADP, AMP-PNP, GTP. A specific ATPase activity of purified actin was 50 nmol/(mg X h). These results suggest that the cytoskeletal ATPase is actin ATPase and the actin ATPase is activated by spectrin and band 4.1.  相似文献   

19.
Clostridium perfringens iota toxin belongs to a novel family of actin-ADP-ribosylating toxins. The effects of ADP-ribosylation of skeletal muscle actin by Clostridium perfringens iota toxin on cytochalasin D-stimulated actin ATPase activity was studied. Cytochalasin D stimulated actin-catalysed ATP hydrolysis maximally by about 30-fold. ADP-ribosylation of actin completely inhibited cytochalasin D-stimulated ATP hydrolysis. Inhibition of ATPase activity occurred at actin concentrations below the critical concentration (0.1 microM), at low concentrations of Mg2+ (50 microM) and even in the actin-DNAase I complex, indicating that ADP-ribosylation of actin blocks the ATPase activity of monomeric actin and that the inhibitory effect is not due to inhibition of the polymerization of actin.  相似文献   

20.
Regulation of molluscan actomyosin ATPase activity   总被引:2,自引:0,他引:2  
The interaction of myosin and actin in many invertebrate muscles is mediated by the direct binding of Ca2+ to myosin, in contrast to modes of regulation in vertebrate skeletal and smooth muscles. Earlier work showed that the binding of skeletal muscle myosin subfragment 1 to the actin-troponin-tropomyosin complex in the presence of ATP is weakened by less than a factor of 2 by removal of Ca2+ although the maximum rate of ATP hydrolysis decreases by 96%. We have now studied the invertebrate type of regulation using heavy meromyosin (HMM) prepared from both the scallop Aequipecten irradians and the squid Loligo pealii. Binding of these HMMs to rabbit skeletal actin was determined by measuring the ATPase activity present in the supernatant after sedimenting acto-HMM in an ultracentrifuge. The HMM of both species bound to actin in the presence of ATP, even in the absence of Ca2+, although the binding constant in the absence of Ca2+ (4.3 X 10(3) M-1) was about 20% of that in the presence of Ca+ (2.2 X 10(4) M-1). Studies of the steady state ATPase activity of these HMMs as a function of actin concentration revealed that the major effect of removing Ca2+ was to decrease the maximum velocity, extrapolated to infinite actin concentration, by 80-85%. Furthermore, at high actin concentrations where most of the HMM was bound to actin, the rate of ATP hydrolysis remained inhibited in the absence of Ca+. Therefore, inhibition of the ATPase rate in the absence of Ca2+ cannot be due simply to an inhibition of the binding of HMM to actin; rather, Ca2+ must also directly alter the kinetics of ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号