首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We previously showed that activation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl conductance (gCFTR) supports parallel activation of amiloride-sensitive epithelial Na+ channel (ENaC) in the native human sweat duct. However, it is not clear whether phosphorylated CFTR, phosphorylated ENaC, or only Cl -channel function is required for activation. We used basilaterally α-toxin-permeabilized human sweat ducts to test the hypothesis that ENaC activation depends only on Cl -channel function and not on phosphorylation of either CFTR or ENaC. CFTR is classically activated by PKA plus millimolar ATP, but cytosolic glutamate activation of gCFTR is independent of ATP and phosphorylation. We show here that both phosphorylation-dependent (PKA) and phosphorylation-independent (glutamate) activation of CFTR Cl channel function support gENaC activation. We tested whether cytosolic application of 5 mM ATP alone, phosphorylation by cAMP, cGMP, G-protein dependent kinases (all in the presence of 100 μM ATP), or glutamate could support ENaC activation in the absence of gCFTR. We found that none of these agonists activated gENaC by themselves when Cl current ( ) through CFTR was blocked by: 1) Cl removal, 2) DIDS inhibition, 3) lowering the ATP concentration to 100 μM (instead of 5 mM required to support CFTR channel function), or 4) mutant CFTR (homozygous ΔF508 CF ducts). However, Cl gradients in the direction of absorption supported, while Cl gradients in the direction of secretion prevented ENaC activation. We conclude that the interaction between CFTR and ENaC is dependent on activated through CFTR in the direction of absorption (Cl gradient from lumen to cell). But such activation of ENaC is independent of phosphorylation and ATP. However, reversing through CFTR in the direction of secretion (Cl gradient from cell to lumen) prevents ENaC activation even in the presence of through CFTR. An erratum to this article is available at .  相似文献   

2.
Defective regulatory interactions between the cystic fibrosis conductance regulator (CFTR) and the epithelial sodium channel (ENaC) have been implicated in the elevated Na+ transport rates across cystic fibrosis airway epithelium. It has recently been proposed that ENaC downregulation by CFTR depends on the ability of CFTR to conduct Cl into the cell and is negligible when Cl flows out of the cell. To study the mechanisms of this downregulation we have measured amiloride-inhibitable Na+ current (I amil ) in oocytes co-expressing rat ENaC and human wild-type CFTR. In oocytes voltage-clamped to −60 mV, stimulating CFTR with 1 mm IBMX reduced I amil by up to 80%, demonstrating that ENaC is inhibited when Cl is conducted out of the cell. Decreasing the level of CFTR stimulation in a single oocyte, decreased both the degree of I amil downregulation and the CFTR-mediated plasma membrane Cl conductance, suggesting a direct correlation. However, I amil downregulation was not affected when Cl flux across oocyte membrane was minimized by holding the oocyte membrane potential near the Cl reversal potential (67% ± 10% inhibition at −20 mV compared to 79% ± 4% at −60 mV) demonstrating that I amil downregulation was independent of the amount of current flow through CFTR. Studies with the Ca2+-sensitive photoprotein aequorin showed that Ca2+ is not involved in I amil downregulation by CFTR, although Ca2+ injection into the cytoplasm did inhibit I amil . These results demonstrate that downregulation of ENaC by CFTR depends on the degree of CFTR stimulation, but does not involve Ca2+ and is independent of the direction and magnitude of Cl transport across the plasma membrane. Received: 15 December 1998/Revised: 5 March 1999  相似文献   

3.
Apical Heterotrimeric G-proteins Activate CFTR in the Native Sweat Duct   总被引:2,自引:0,他引:2  
Other than the fact that the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel can be activated by cAMP dependent kinase (PKA), little is known about the signal transduction pathways regulating CFTR. Since G-proteins play a principal role in signal transduction regulating several ion channels [4, 5, 9], we sought to test whether G-proteins control CFTR Cl conductance (CFTR G Cl ) in the native sweat duct (SD). We permeabilized the basolateral membrane with α-toxin so as to manipulate cytosolic nucleotides. We activated G-proteins and monitored CFTR G Cl activity as described earlier [20, 23, 25]. We now show that activating G-proteins with GTP-γ-S (100 μm) also activates CFTR G Cl in the presence of 5 mm ATP alone (without exogenous cAMP). GTP-γ-S increased CFTR G Cl by 44 ± 20 mS/cm2 (mean ±se; n= 7). GDP (10 mm) inhibited G-protein activation of CFTR G Cl even in the presence of GTP-γ-S. The heterotrimeric G-protein activator (AlF4 ) in the cytoplasmic bath activated CFTR G Cl (increased by 51.5 ± 9.4 mS/cm2 in the presence of 5 mm ATP without cAMP, n= 6), the magnitude of which was similar to that induced by GTP-γ-S. Employing immunocytochemical-labeling techniques, we localized Gαs, Gαi, Gαq, and Gβ at the apical membranes of the sweat duct. Further, we showed that the mutant CFTR G Cl in ducts from cystic fibrosis (CF) subjects could be partially activated by G-proteins. The magnitude of mutant CFTR G Cl activation by G-proteins was smaller as compared to non-CF ducts but comparable to that induced by cAMP in CF ducts. We conclude that heterotrimeric G-proteins are present in the apical membrane of the native human sweat duct which may help regulate salt absorption by controlling CFTR G Cl activity. Received: 9 June 2000/Revised: 5 October 2000  相似文献   

4.
In our previous study, it was suggested that ANP and cGMP may increase Na+ absorption in the urinary bladder of the Japanese tree frog, Hyla japonica. Thus, Na+ transport activated by ANP was investigated electrophysiologically by using a cell-attached patch-clamp technique in freshly isolated cells from the urinary bladder. A predominant channel expressed was a low conductance Na+ channel in the epithelial cells. The channel exhibited conductance for inward currents of 4.9 ± 0.2 pS, long open and closed times (c.a. 190 ms), and positive reversal potential. The channel activity was decreased under the pipette solution including 10−6 M amiloride. These characteristics were similar to those of amiloride-sensitive Na+ channels (ENaC). Addition of 10−9 M ANP activated and significantly increased the ENaC activity from 0.58 ± 0.09 to 1.47 ± 0.34. On the other hand, mean amplitudes and conductance of single channel did not change significantly after the addition of ANP. Addition of 10−5 M 8-Br-cGMP also activated the ENaC and significantly increased the channel activity from 0.56 ± 0.10 to 2.00 ± 0.33. The addition of ANP failed to activate the ENaC in the presence of 10−6 M amiloride. These results suggested that ANP and cGMP activate Na+ transport via ENaC in the epithelial cells of frog urinary bladder.  相似文献   

5.
The activities of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel and the amiloride-sensitive epithelial Na(+) channel (ENaC) are acutely coordinated in the sweat duct. However, the mechanisms responsible for cross-talk between these ion channels are unknown. Previous studies indicated that luminal pH of sweat ducts varies over 3 pH units and that the cytoplasmic pH affects both CFTR and ENaC. Therefore, using basolaterally alpha-toxin-permeabilized apical membrane preparations of sweat ducts as an experimental system, we tested the hypothesis that the cytosolic pH may mediate the cross-talk between CFTR and ENaC. We showed that while luminal pH had no effect, cytosolic pH acutely affected ENaC activity. That is, acidic pH inhibited, while basic pH activated, ENaC. pH regulation of ENaC appears to be independent of CFTR or endogenous kinase activities because basic pH independently stimulated ENaC (1) in normal ducts even when CFTR was deactivated, (2) in CF ducts that lack CFTR in the plasma membranes and (3) after blocking endogenous kinase activity with staurosporine. Considering the evidence of Na(+)/H(+) exchange (NHE) activity as shown by the expression of mRNA and function of NHE in the basolateral membrane of the sweat duct, we postulate that changes in cytosolic Na(+) ([Na(+)]( i )) may alter cytosolic pH (pH( i )) as salt loads into the cell during electrolyte absorption. These changes may play a role in coordinating the activities of ENaC and CFTR during transepithelial salt transport.  相似文献   

6.
Knoche M  Peschel S  Hinz M  Bukovac MJ 《Planta》2000,212(1):127-135
Water conductance of the cuticular membrane (CM) of mature sweet cherry fruit (Prunus avium L. cv. Sam) was investigated by monitoring water loss from segments of the outer pericarp excised from the cheek of the fruit. Segments consisted of epidermis, hypodermis and several cell layers of the mesocarp. Segments were mounted in stainless-steel diffusion cells with the mesocarp surface in contact with water, while the outer cuticular surface was exposed to dry silica (22 ± 1 °C). Conductance was calculated by dividing the amount of water transpired per unit area and time by the difference in water vapour concentration across the segment. Conductance values had a log normal distribution with a median of 1.15 × 10−4 m s−1 (n=357). Transpiration increased linearly with time. Conductance remained constant and was not affected by metabolic inhibitors (1 mM NaN3 or 0.1 mM carbonylcyanide m-chlorophenylhydrazone) or thickness of segments (range 0.8–2.8 mm). Storing fruit (up to 42 d, 1 °C) used as a source of segments had no consistent effect on conductance. Conductance of the CM increased from cheek (1.16 ± 0.10 × 10−4 m s−1) to ventral suture (1.32 ± 0.07 × 10−4 m s−1) and to stylar end (2.53 ± 0.17 × 10−4 m s−1). There was a positive relationship (r2=0.066**; n=108) between conductance and stomatal density. From this relationship the cuticular conductance of a hypothetical astomatous CM was estimated to be 0.97 ± 0.09 × 10−4 m s−1. Removal of epicuticular wax by stripping with cellulose acetate or extracting epicuticular plus cuticular wax by dipping in CHCl3/methanol increased conductance 3.6- and 48.6-fold, respectively. Water fluxes increased with increasing temperature (range 10–39 °C) and energies of activation, calculated for the temperature range from 10 to 30 °C, were 64.8 ± 5.8 and 22.2 ± 5.0 kJ mol−1 for flux and vapour-concentration-based conductance, respectively. Received: 23 March 2000 / Accepted: 28 July 2000  相似文献   

7.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

8.
A laboratory study investigated the metabolic physiology, and response to variable periods of water and sodium supply, of two arid-zone rodents, the house mouse (Mus domesticus) and the Lakeland Downs short-tailed mouse (Leggadina lakedownensis) under controlled conditions. Fractional water fluxes for M. domesticus (24 ± 0.8%) were significantly higher than those of L. lakedownensis (17 ± 0.7%) when provided with food ad libitum. In addition, the amount of water produced by M. domesticus and by L. lakedownensis from metabolic processes (1.3 ± 0.4 ml · day−1 and 1.2 ± 0.4 ml · day−1, respectively) was insufficient to provide them with their minimum water requirement (1.4 ± 0.2 ml · day−1 and 2.0 ± 0.3 ml · day−1, respectively). For both species of rodent, evaporative water loss was lowest at 25 °C, but remained significantly higher in M. domesticus (1.1 ± 0.1 mg H2O · g−0.122 · h−1) than in L. lakedownensis (0.6 ± 0.1 mg H2O · g−0.122 · h−1). When deprived of drinking water, mice of both species initially lost body mass, but regained it within 18 days following an increase in the amount of seed consumed. Both species were capable of drinking water of variable saline concentrations up to 1 mol · l−1, and compensated for the increased sodium in the water by excreting more urine to remove the sodium. Basal metabolic rate was significantly higher in M. domesticus (3.3 ± 0.2 mg O2 · g−0.75 · h−1) than in L. lakedownensis (2.5 ± 0.1 mg O2 · g−0.75 · h−1). The study provides good evidence that water flux differences between M. domesticus and L. lakedownensis in the field are due to a requirement for more water in M. domesticus to meet their physiological and metabolic demands. Sodium fluxes were lower than those observed in free-ranging mice, whose relatively high sodium fluxes may reflect sodium associated with available food. Accepted: 16 August 1999  相似文献   

9.
Summary The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of “endogenous” CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl conductance (Gcl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10−5 M) significantly increased the Cl diffusion potential (Vt) generated by a luminally directed Cl gradient from − 15.3 ± 0.7 mV to −23.9 ± 1.1 mV,n=39; and decreased the transepithelial resistance (Rt) from 814.8 ± 56.3 Ω.cm2 to 750.5 ± 47.5 Ω.cm2,n=39, (n=number of cultures). cAMP activation, anion selectivity (Cl>I>gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10−5 M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 ± 3.1% and 77.9 ± 2.6%, respectively, and an increase in Rt by 7.2 ± 0.8%,n=36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue. It provides an opportunity to study the properties and role of CFTR in the context of absorptive function in immortalized epithelial cells.  相似文献   

10.
A cellulase-free xylanase production by Thermomyces lanuginosus SSBP using bagasse pulp was examined under submerged (SmC) and solid-state cultivation (SSC). Higher level of xylanase activity (19,320 ± 37 U g−1 dried carbon source) was obtained in SSC cultures than in SmC (1,772 ± 15 U g−1 dried carbon source) after 120 h with 10% inoculum. The biobleaching efficacy of crude xylanase was tested on bagasse pulp, and the maximum brightness of 46.1 ± 0.06% was observed with 50 U of crude xylanase per gram of pulp, which was 3.8 points higher than the brightness of untreated samples. Reducing sugars (26 ± 0.1 mg g−1) and UV-absorbing lignin-derived compounds in the pulp filtrates were observed as maximum in 50 U of crude xylanase-treated samples. T. lanuginosus SSBP has potential applications due to its high productivity of xylanase and its efficiency in pulp bleaching.  相似文献   

11.
Antioxidant activities of both cells and extracellular substances were evaluated in 12 soil-isolated strains of microalgae according to FRAP and DPPH-HPLC assays. Their total phenolic contents were also determined by Folin–Ciocalteu method. Extractions were performed with hexane, ethyl acetate, and water. The results of FRAP assay showed that algal cells contained considerable amounts of antioxidants from 0.56 ± 0.06 to 31.06 ± 4.00 μmol Trolox g−1 for Microchaete tenera hexane extract and Chlorella vulgaris water extract, respectively. In water fractions of extracellular substances, the antioxidants were from 1.30 ± 0.15 μmol Trolox g−1 for Fischerella musicola to 73.20 ± 0.16 μmol Trolox g−1 for Fischerella ambigua. Also, DPPH-HPLC assay represented high antioxidant potential of water fractions. The measured radical-scavenging activities of the studied microalgae were at least 0.15 ± 0.02 in Nostoc ellipsosporum cell mass to a maximum of 109.02 ± 8.25 in C. vulgaris extracellular substance. The amount of total phenolic contents varied in different strains of microalgae and ranged from zero in hexane extract to 19.15 ± 0.04 mg GAE g−1 in C. vulgaris extracellular water fraction. Significant correlation coefficients between two measured parameters indicated that phenolic compounds were a major contributor to the microalgal antioxidant capacities.  相似文献   

12.
A three-step biohydrogen production process characterized by efficient anaerobic induction of the formate hydrogen lyase (FHL) of aerobically grown Escherichia coli was established. Using E. coli strain SR13 (fhlA ++, ΔhycA) at a cell density of 8.2 g/l medium in this process, a specific hydrogen productivity (28.0 ± 5.0 mmol h−1 g−1 dry cell) of one order of magnitude lower than we previously reported was realized after 8 h of anaerobic incubation. The reduced productivity was attributed partly to the inhibitory effects of accumulated metabolites on FHL induction. To avoid this inhibition, strain SR14 (SR13 ΔldhA ΔfrdBC) was constructed and used to the effect that specific hydrogen productivity increased 1.3-fold to 37.4 ± 6.9 mmol h−1 g−1. Furthermore, a maximum hydrogen production rate of 144.2 mmol h−1 g−1 was realized when a metabolite excretion system that achieved a dilution rate of 2.0 h−1 was implemented. These results demonstrate that by avoiding anaerobic cultivation altogether, more economical harvesting of hydrogen-producing cells for use in our biohydrogen process was made possible.  相似文献   

13.
Cadmium and mercury concentrations were measured in the tissues of 64 individual albatrosses [23 wandering albatrosses (Diomedea exulans), 9 royal albatrosses (Diomedea epomophora) and 32 shy albatrosses (Thalassarche cauta)] which were killed as by-catch in longline fishing activities between 1991 and 1994. Mercury concentrations were also determined for 33 shy albatross eggs (excluding shells). The birds were all sexed and assigned to one of two age classes (immature and adult). The three species exhibited differences both in overall concentrations of cadmium and mercury, and also in the pattern of accumulation of metals with age and sex. Wandering albatrosses exhibited the highest mercury concentrations with a mean concentration in adult liver samples of 920.0 ± 794.1 μg g−1 dry weight. Shy albatrosses had the lowest mercury concentrations with mean concentrations in adult livers of 36.3 ± 21.4 mg g−1 dry weight. The highest mercury concentration was 1800 μg g−1 for an adult female wandering albatross. Cadmium concentrations were less variable, with adult royal albatrosses having the highest average concentrations (180.0 ± 165.0 in adult kidneys) and adult shy albatrosses the lowest (40.1 ± 20.0 in adult kidney). The highest individual cadmium concentration was 287 μg g−1 for a juvenile wandering albatross. There was no evidence of increased accumulation of cadmium with age in any of the species, but wandering albatrosses showed higher mercury concentrations in adults than juveniles. Female wandering albatrosses also had significantly higher mercury concentrations than males. The mercury contents of the shy albatross eggs were very low, with a maximum concentration of 5.4 μg g−1. The results of this study are consistent with the findings of previous work on albatrosses and support the notion that the life-history strategy of these species (i.e. long-lived with low reproductive output) may be an important determinant in the concentrations of some metals found in their tissues. Accepted: 15 February 1999  相似文献   

14.
Open-flow oxygen and carbon dioxide respirometry was used in Neumünster Zoo (Germany) to examine the energy requirements of six Asian small-clawed otters (Amblonyx cinerea) at rest and swimming voluntarily under water. Our aim was to compare their energy requirements with those of other warm-blooded species to elucidate scale effects and to test whether the least aquatic of the three otter species differs markedly from these and its larger relatives. While at rest on land (16 °C, n = 26), otters (n = 6, mean body mass 3.1 ± 0.4 kg) had a respiratory quotient of 0.77 and a resting metabolic rate of 5.0 ± 0.8 Wkg−1(SD). This increased to 9.1 ± 0.8 Wkg−1 during rest in water (11–15 °C, n = 4) and to 17.6 ± 1.4 Wkg−1 during foraging and feeding activities in a channel (12 °C, n = 5). While swimming under water (n = 620 measurements) in an 11-m long channel, otters preferred a speed range between 0.7 ms−1 and 1.2 ms−1. Transport costs were minimal at 1 ms−1 and amounted to 1.47 ± 0.24 JN−1 m−1 (n = 213). Metabolic rates of small-clawed otters in air were similar to those of larger otter species, and about double those of terrestrial mammals of comparable size. In water, metabolic rates during rest and swimming were larger than those extrapolated from larger otter species and submerged swimming homeotherms. This is attributed to high thermoregulatory costs, and high body drag at low Reynolds numbers. Accepted: 21 December 1998  相似文献   

15.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

16.
The Hogsback (32°33S 26°57E) and Alice (32°47S 26°50E), Eastern Cape, South Africa, are separated by only 24 km but by 1000 m in altitude and fall into different climatic regions. Thermal responses (energy expenditure and body temperature) to ambient temperature were measured in a population of vlei rats (Otomys irroratus) from each of the two localities. We predicted that animals from the colder Hogsback would show differences in their thermal physiology and morphology consistent with better cold-resistance. Basal metabolic rates of the Hogsback population were slightly, but not significantly, higher than the Alice population (23.9 J g−1 h−1 vs 22.3 J g−1 h−1), but the slope of the regression between energy expenditure and ambient temperature below the thermal neutral zone was significantly lower (−1.28 vs −1.60). Body temperature, although quite variable in both populations, was not significantly influenced by ambient temperature in the Hogsback population, whereas that of Alice animals was. Fur length was longer and relative size of the ears and tail was smaller in the Hogsback population, which probably accounted for the slightly lower minimum thermal conductance (1.79 J g−1 h−1 °C−1 vs 1.91 J g−1 h−1 °C−1) in the Hogsback population. Vlei rats from the two sites also have different karyotypes that correlate with climate but there is insufficient evidence at present to suggest that the different karyotypes and the physiological parameters measured are adaptive. Accepted: 15 October 1998  相似文献   

17.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

18.
Here we explore the mechanism and associated structure-function implications of loss of function for epithelial Na+ channel (ENaC) containing a pseudohypoaldosteronism type 1 (PHA-1)-causing missense point mutation. As expected, human ENaC that contained subunits harboring PHA-1-causing substitutions within an absolutely conserved, cytosolic Gly residue (e.g., βG37S) had significantly less activity. Unexpectedly, though, such substitution also results in voltage sensitivity with greater activity at hyperpolarizing potentials. This is a consequence of voltage-dependent changes in the single-channel open probability and is not species- or subunit-dependent. Voltage sensitivity in PHA-1 mutants stems from the disruption of critical structure, rather than the development of new properties resulting from the introduction of novel side chains. Residues near the conserved His-Gly sequence of G95 in α-mENaC are particularly important for voltage sensing. Although substitution of I93 in α-mENaC results in voltage sensing, it also slows the activation and deactivation kinetics enough to enable capture of the dynamic changes in single-channel open probability that account for changes in macroscopic activity. This provides definitive proof of the mechanism that underlies loss of function. In addition, the voltage dependence of ENaC with PHA-1 substitutions is akin to that which results from substitution of a critical, interfacial Trp residue conserved at the intracellular base of TM1 (e.g., W112 in α-mENaC). Dynamic interactions between similarly positioned His and Trp residues are essential for gating and the girdle-like structure that lines the intracellular mouth of the M2 proton channel. The similar residues in ENaC may serve a shared function, suggesting the possibility of an intracellular girdle just below the mouth of the ENaC pore.  相似文献   

19.
The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody α (H-300) raised against the human α1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 μmol gFM−1 h−1) than in those of L. vulgaris (31.8 ± 3.3 μmol gFM−1 h−1). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 μmolATP gFM−1 h−1, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.  相似文献   

20.
Dietary cholesterol can affect both body lipid composition and steroid hormone concentration. We investigated whether a diet rich in cholesterol influences torpor patterns of hibernating chipmunks (Tamias amoenus) and, if so, whether these changes are better explained by diet-induced changes in body lipid composition or the concentration of testosterone, which at high levels inhibits torpor. Two groups of chipmunks were maintained either on a cholesterol diet (rodent chow containing 10% cholesterol) or a control diet (rodent chow) during pre-hibernation fattening and throughout the hibernation season. Torpid chipmunks on the cholesterol diet had significantly lower minimum body temperatures (−0.2 ± 0.2 vs +0.6 ± 0.2 °C), lower metabolic rates (0.029 ± 0.002 ml O2 g−1h−1 vs 0.035 ± 0.001 ml O2 g−1h−1), and longer torpor bouts at −1 °C (6.8 ± 0.5 vs 4.1 ± 1.0 days) than chipmunks on the control diet. Dietary cholesterol resulted in a significant increase in blood plasma cholesterol (sevenfold), liver cholesterol content (6.9-fold) and liver triglyceride content (3.5-fold) in comparison to controls. In contrast, dietary cholesterol had no detectable effect on the concentration of plasma testosterone, which was very low in both groups. Since torpor was deeper and longer in animals on the cholesterol diet our study suggests that torpor patterns of chipmunks were either directly affected by the dietary cholesterol or via changes in body lipid composition. Accepted: 22 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号