首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteins AP65, AP51, AP33 and AP23 synthesized by Trichomonas vaginalis organisms in high iron play a role in adherence. Multigene families encode enzymes of the hydrogenosome organelles, which have identity to adhesins. This fact raises questions regarding the compartmentalization of the proteins outside the organelle and about the interactions of adhesins with host cells. Data here demonstrate the presence of the proteins outside the organelle under high-iron conditions. Fluorescence and immuno-cytochemical experiments show that high-iron-grown organisms coexpressed adhesins on the surface and intracellularly in contrast with low-iron parasites. Furthermore, the AP65 epitopes seen by rabbit anti-AP65 serum that blocks adherence and detects surface proteins were identified, and a mAb reacting to those epitopes recognized the trichomonal surface. Two-dimensional electrophoresis and immunoblot of adhesins from surface-labelled parasites provided evidence that all members of the multigene family were co-ordinately expressed and placed on the trichomonal surface. Similar two-dimensional analysis of proteins from purified hydrogenosomes obtained from iodinated trichomonads confirmed the specific surface labelling of proteins. Contact of trichomonads with vaginal epithelial cells increased the amount of surface-expressed adhesins. Moreover, we found a direct relationship between the levels of adherence and amount of adhesins bound to immortalized vaginal and ureter epithelial cells, further reinforcing specific associations. Finally, trichomonads of MR100, a drug-resistant isolate absent in hydrogenosome proteins and adhesins, were non-adherent. Overall, the results confirm an important role for iron and contact in the surface expression of adhesins of T. vaginalis organisms.  相似文献   

2.
Adherence to host cells is essential for the initiation and maintenance of infection by mucosal pathogens. The protozoan Trichomonas vaginalis colonizes the human urogenital tract via four surface proteins (AP65, AP51, AP33 and AP23). To characterize AP33 further, six cDNA clones were examined. Restriction mapping indicated that the six clones represented three similar genes. Southern analysis confirmed the existence of three single-copy AP33 genes and suggested a semi-conservative genomic arrangement between T. vaginalis isolates. Analysis of full-length sequences determined that each contained a 930 bp open reading frame encoding a protein of approximately 33 000 Da. Sequence comparisons revealed a high degree of identity at both the DNA and the protein levels. N-terminal protein sequencing established the presence of leader peptides. Each of the three full-length recombinant proteins had a predicted pI of approximately 10, which was verified experimentally for the T. vaginalis AP33 adhesin. A database search revealed that AP33 had significant identity to the succinyl-CoA synthetase α-subunit of several different organisms and virtually 100% identity to the reported T. vaginalis subunit. Unlike commercially purchased enzyme, the recombinant proteins retained adhesive properties equal to the natural T. vaginalis AP33. The characteristics of the AP33 protein are similar to those of the other adhesins and emphasize a complex host–parasite relationship.  相似文献   

3.
4.
We present observations on the fine structure and the division process of the Golgi complex in the protists Trichomonas vaginalis and Tritrichomonas foetus, parasites of the urogenital tract of humans and cattle, respectively. The Golgi in trichomonads is a prominent structure, associated with striated parabasal filaments to which this organelle seems to be connected. We followed by immunofluorescence and electron microscopy the Golgi in interphasic and mitotic cells. Ultrastructural studies were performed using fast-freezing fixation, immunocytochemistry using antisera to the known adhesins AP65 and AP51, cytochemistry (acid phosphatase, Ca++-ATPase, zinc iodide-osmium tetroxide technique (ZIO), for analysis of distribution of the endoplasmic reticulum and Golgi complex, and Thiéry's techniques), routine and serial thin-sections. Three-dimensional reconstruction, NBD-ceramide, fluorescent lectin (WGA) and nocodazole treatments were also used. We demonstrate that: (1) the Golgi in trichomonads is a single-copy organelle; (2) presents a fenestrated structure; (3) is formed by 8-12 saccules; (4) is connected to the parabasal filaments by thin filamentous bridges; (5) by cytochemistry, presents a positive reaction for the lectin WGA, Ca++-ATPase, acid phosphatase, ZIO and Thiéry's techniques; (6) does not appear to break down at any point of the cell cycle; (7) elongates during the cell cycle by lateral growth; (8) is labeled by anti-glutamylated tubulin antibodies, but it is not fragmented by nocodazole treatment; (9) before mitosis, the already elongated Golgi ribbon undergoes progressive medial fission, cisternae by cisternae, starting at the cisternae adjacent to the cell surface and ending with the cis-most cisternae; (10) the Golgikinesis originates two small Golgi ribbons; (11) the Golgi is intensely labeled with the antisera to the AP65 and AP51 adhesins in T. vaginalis, thus seeming to be a key station in the production of adhesins.  相似文献   

5.
6.
7.
A cysteine proteinase of 30 kDa (CP30) of Trichomonas vaginalis, is known to play a role in cytoadherence of the parasite to host cells. However, the CP30 activity in clinical isolates from symptomatic and asymptomatic patients has not been analyzed. In the present study, CP30 was detected in 20 fresh and long-term culture maintained T. vaginalis isolates each from symptomatic and asymptomatic women by substrate gel electrophoresis and immunoblotting. Though CP30 was detected in all the fresh isolates from 20 symptomatic and 20 asymptomatic women, the intensity of CP30 band was significantly higher in isolates from symptomatic as compared to asymptomatic women indicating higher expression in former. CP30 was found in all the 20 long-term cultured isolates from symptomatic whereas only in 70% of asymptomatic women indicating that CP30 expression is a more stable characteristic of symptomatic isolates. The isolates from symptomatic women, demonstrated significantly higher cytoadherence to VECs as compared to asymptomatic women. In both the types of isolates, this cytoadherence was inhibited significantly by CP30 specific hyperimmune serum. These results confirm that CP30 is an important virulence factor of T. vaginalis and has an important role in cytoadherence to VECs and thus has a role in pathogenesis of trichomoniasis.  相似文献   

8.
The enzymes pyruvate ferredoxin oxidoreductase (PFO), malic enzyme (ME), and the α‐ and β‐subunits of succinyl‐CoA synthetase (SCS) catalyze key steps of energy metabolism in Trichomonas vaginalis hydrogenosomes. These proteins have also been characterized as the adhesins AP120 (PFO), AP65 (ME), AP33, and AP51 (α‐ and β‐SCS), which are localized on the cell surface and mediate the T. vaginalis cytoadherence. However, the mechanisms that facilitate the targeting of these proteins to the cell surface via the secretory pathway and/or to hydrogenosomes are not known. Here we adapted an in vivo biotinylation system to perform highly sensitive tracing of protein trafficking in T. vaginalis. We showed that α‐ and β‐SCS are biotinylated in the cytosol and imported exclusively into the hydrogenosomes. Neither α‐ nor β‐SCS is biotinylated in the endoplasmic reticulum and delivered to the cell surface via the secretory pathway. In contrast, two surface proteins, tetratricopeptide domain‐containing membrane‐associated protein and tetraspanin family surface protein, as well as soluble‐secreted β‐amylase‐1 are biotinylated in the endoplasmic reticulum and delivered through the secretory pathway to their final destinations. Taken together, these results demonstrate that the α‐ and β‐SCS subunits are targeted only to the hydrogenosomes, which argues against their putative moonlighting function.  相似文献   

9.
Trichomonas vaginalis is a flagellated protozoan which infects the urogenital tract of humans. Previous studies have demonstrated that monoclonal antibodies (MAbs) against a 62 kDa proteinase (4D8 and 1A8) decreased cytoadherence of the parasite to epithelial cells in vitro and passive inoculation of mice with two MAbs 24 h before the intraperitoneal challenge resulted in different grade of protections to T. vaginalis infection. In the present paper we describe the characterization of the epitopes recognized by MAbs 4D8 and 1A8. The epitopes were characterized by heat treatment, trichloroacetic acid precipitation, beta-mercaptoethanol treatment, enzymes proteolysis and periodate oxidation. The results showed that the two MAbs 4D8 and 1A8 each react with a different protein epitope of repetitive nature found on the same excretory-secretory molecules of T. vaginalis and it could explain the variation in the protection grade obtained in the challenge experiments.  相似文献   

10.
Trichomoniasis is a sexually transmitted disease due to infection with Trichomonas vaginalis, and it can cause serious consequences for women's health. To study the virulence factors of this pathogen, T. vaginalis surface proteins were investigated using polyclonal antibodies specific to the membrane fractions of T. vaginalis. The T. vaginalis expression library was constructed by cloning the cDNA derived from mRNA of T. vaginalis into a phage λ Uni-ZAP XR vector, and then used for immunoscreening with the anti-membrane proteins of T. vaginalis antibodies. The immunoreactive proteins identified included adhesion protein AP65-1, α-actinin, kinesin-associated protein, teneurin, and 2 independent hypothetical proteins. Immunofluorescence assays showed that AP65-1, one of the identified immunogenic clones, is prevalent in the whole body of T. vaginalis. This study led us to identify T. vaginalis proteins which may stimulate immune responses by human cells.  相似文献   

11.
We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65.  相似文献   

12.
The cytoadherence of Trichomonas vaginalis, the sexually transmitted flagellated protozoan, to vaginal epithelial cells (VECs) is the key to infection. Electron microscopy revealed that in vitro-grown parasites having typical globular shape transformed rapidly after contact with VECs into thin, flat, amoeboid cells, maximizing the area of adhesion to the surface of VECs. Amoebic trichomonads formed filopodia and pseudopodia, which interdigitated at distinct sites on the plasma membrane of target cells. In contrast, the amoeboid transformation did not occur for T. vaginalis interacting with He La cells, the previously used in vitro host model cell. Initial parasitism of VECs by a single organism was followed by establishment of a monolayer of trichomonads on the host cell. Finally, parasites adhering to either VECs or HeLa cells were induced to synthesize greater amounts of the four previously described adhesins. Therefore, distinct signals after contact with either epithelial cell type leads to the morphological transformation and/or induction of adhesin synthesis by T. vaginalis.  相似文献   

13.
Trichomonas vaginalis is the cause of human trichomoniasis, the most common non-viral sexually transmitted disease worldwide. Although acquisition of iron by binding to host hemoglobin through distinct receptor(s) has been described, no specific heme- or hemoglobin-binding site has been reported in this parasite.To determine the presence of hemoglobin-binding protein(s), membrane proteins were subjected to hemoglobin-affinity chromatography. Eluted proteins were analysed by SDS-PAGE. Two protein bands of 48 and 63 kDa were detected. Competition assay with an excess amount of hemoglobin or hemin in hemoglobin-affinity chromatography could block the 63- and 48-kDa bands, respectively.Further analysis by mass spectrometry indicated that the 48- and 63-kDa proteins had identity with two T. vaginalis adhesins: AP51 and AP65, respectively. This study confirms the existence of multifunctional proteins in T. vaginalis, and suggested that AP51 and AP65, besides serving as adhesion molecules, could also act as heme- and hemoglobin-binding proteins.  相似文献   

14.
Analysis of six isolates of Trichomonas vaginalis was carried out with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunoelectrotransfer blot (EITB). Trichloroacetic acid-treated antigens of the 6 isolates revealed 25 protein profiles ranging 12-170 kDa of molecular weight in SDS-PAGE. In EITB, the specific immunogenic bands were visualized at 51 kDa and 96 kDa when HY-1 antigen was probed with different mice sera immunized with 6 isolates of T. vaginalis. The banding patterns with different sera showed isolate-to-isolate variability. In EITB, homologous antigen (HY-1) did not show any enhanced response in reacting to homologous antiserum (HY-1) when 6 isolates of T. vaginalis were probed with a single serum (HY-1). It is assumed that the different banding patterns of six isolates show isolate-to-isolate variability and immunogenic common bands in 41, 47, 74 and 94 kDa on EITB may connote the important significance on immune response in T. vaginalis infection.  相似文献   

15.
In this work, evidence for a critical role of Trichomonas vaginalis protein phosphatase 1 gamma (TvPP1γ) in proliferation and attachment of the parasite to the mammalian cell is provided. Firstly, proliferation and attachment of T. vaginalis parasites to HeLa cells was blocked by calyculin A (CA), a potent PP1 inhibitor. Secondly, it was demonstrated that the enzyme activity of native and recombinant TvPP1γ proteins was inhibited by CA. Thirdly, reverse genetic studies confirmed that antisense oligonucleotides targeted to PP1γ but not PP1α or β inhibited proliferation and attachment of trichomonads CA-treated parasites underwent cytoskeletal modifications, including a lack of axostyle typical labelling, suggesting that cytoskeletal phosphorylation could be regulated by a CA-sensitive phosphatase where the role of PP1γ could not be ruled out. Analysis of subcellular distribution of TvPP1γ by cell fractionation and electron microscopy demonstrated the association between TvPP1γ and the cytoskeleton. The expression of adhesins, AP120 and AP65, at the cell surface was also inhibited by CA. The concomitant inhibition of expression of adhesins and changes in the cytoskeleton in CA-treated parasites suggest a specific role for PP1γ -dependent dephosphorylation in the early stages of the host-parasite interaction. Molecular modelling of TvPP1γ showed the conservation of residues critical for maintaining proper folding into the gross structure common to PP1 proteins. Taken together, these results suggest that TvPP1γ could be considered a potential novel drug target for treatment of trichomoniasis.  相似文献   

16.
Haemagglutination and tissue culture adhesion of Gardnerella vaginalis   总被引:1,自引:0,他引:1  
Six strains of Gardnerella vaginalis were studied to examine the adhesin-receptor mechanism involved in their attachment to human red blood cells and an epithelial tissue culture cell line (McCoy). The adhesins involved in the attachment of the bacteria to each of these cells were proteinaceous but showed marked differences after various chemical or physical treatments, indicating that separate adhesins were present. Haemagglutinating strains were more hydrophobic than tissue-culture-adherent strains. Haemagglutination of human red blood cells by strains of G. vaginalis was inhibited by galactose, lactose, N-acetylneuraminic acid and phosphatidylserine. In contrast, the tissue-culture adherence of strains was not inhibited by these substances.  相似文献   

17.
Recently, we found that inhibition of putrescine synthesis by ornithine decarboxylase (ODC) significantly increased Trichomonas vaginalis adherence mediated by protein adhesins. Surprisingly and unexpectedly, trichomonal contact-dependent cytotoxicity was absent. Therefore, a role for polyamine depletion on regulation of T. vaginalis cytotoxicity mediated by the cysteine proteinase (CP) of 65-kDa, CP65, was investigated. We performed cytotoxicity and cell-binding assays followed by zymograms, as well as Western blot and indirect immunofluorescence assays using specific anti-CP65 antibodies to detect CP65. Trichomonads grown in the presence of the ODC inhibitor, 1-4-diamino-2-butanone (DAB) had lower levels of cytotoxicity that corresponded with diminished CP65 proteolytic activity when compared to untreated organisms handled identically. Likewise, semiquantitative and qRT-PCR as well as Western blot and immunofluorescence assays showed decreased amounts of tvcp65 mRNA and CP65 protein in DAB-treated parasites. These effects were reversed by addition of exogenous putrescine. These data show a direct link between polyamine metabolism and expression of the cytotoxic CP65 proteinase involved in trichomonal host cellular damage.  相似文献   

18.
A human T cell hybridoma, II-23.D7, was induced with phorbol ester to express a surface form of lymphotoxin (LT, TNF-beta) and an associated 33-kDa glycoprotein. The LT epitopes were detected by surface immunofluorescence staining and by immunoprecipitation from radioiodinated or biosynthetically labeled cells with the use of anti-rLT polyclonal and monoclonal antibodies. The epitopes detected by the antibody were related to LT because adsorption of the anti-rLT with PMA-activated II-23.D7 cells resulted in the removal of the neutralizing titer of the anti-rLT antiserum. Immunoprecipitation of surface radioiodinated II-23.D7 cells revealed two bands of 25 kDa and 33 kDa that were specifically precipitated with anti-rLT, but not anti-rTNF antibodies. Enzymatic digestion with glycanases showed both proteins to have N-linked carbohydrate, with O-linked sugar limited to the 25-kDa protein. To determine the biochemical relationship between these proteins, the two LT-like forms were purified from detergent-solubilized II-23.D7 cells by immunoaffinity chromatography. Peptide mapping using CNBr cleavage showed the 25-kDa surface form to be identical to rLT, whereas the 33-kDa protein was different. Biosynthetic labeling studies showed that p33 contained both methionine and cysteine, whereas the p25 contained only methionine. Thus, the surface LT form lacks a leader peptide indicating an anchoring mechanism distinct from that described for membrane TNF. The nature of the attachment of this LT form to the membrane surface is not clear, however, neither TNF receptor binding nor lipid linkages appear to be involved. The accessory protein, p33, may anchor LT to the surface. These findings identify a new characteristic of LT and point toward an additional pathway by which T lymphocytes may mediate cytolytic activity and regulate inflammatory processes.  相似文献   

19.
Brucella is an invasive organism that multiplies and survives within eukaryotic cells. The brucellae are able to adhere to the surface of cultured epithelial cells, a mechanism that may facilitate penetration and dissemination to other host tissues. However, no adhesins that allow the bacteria to interact with the surface of epithelial cells before migration within polymorphonuclear leukocytes, monocytes and macrophages have been described. Here, we show that Brucella surface proteins (SPs) with apparent molecular masses of 14, 18 and 41 kDa bound selectively to HeLa cells. However, only antibodies directed against the 41 kDa surface protein (SP41) inhibited in dose-response manner, bacterial adherence and invasion of HeLa cells. HeLa cells treated with neuraminidase did not bind SP41, suggesting the involvement of cellular sialic acid residues in this interaction. Biochemical analysis of SP41 revealed that this protein is the predicted product of the ugpB locus, which showed significant homology to the glycerol-3-phosphate-binding ATP-binding cassette (ABC) transporter protein found in several bacterial species. SP41 appears to be exposed on the bacterial surface as determined by immunofluorescence and immunogold labelling with anti-SP41 antibody. An isogenic DeltaugpB mutant showed a significant inhibitory effect on Brucella adherence and invasion of human cultured epithelial cells and this effect could be reversed by restoration of the ugpB on a plasmid. Lastly, we also show that most of the sera from individuals with acute brucellosis, but not sera obtained from healthy donors or patients with chronic brucellosis, mount antibody reactivity against SP41, suggesting that this protein is produced in vivo and that it elicits an antibody immune response. These data are novel findings that offer new insights into understanding the interplay between this bacterium and host target cells, and identify a new target for vaccine development and prevention of brucellosis.  相似文献   

20.
Fimbrial (type 1, P, and S) and afimbrial adhesins, the unique virulence traits of uropathogenic Escherichia coli (UPEC), are well recognized for their role in the initial step of uropathogenesis. In this study, we investigated whether these adhesins are dispensable for UPEC in adherence and invasion of uroepithelial cells by using E. coli isolates (n=40) from cystitis patients and T-24 cells, the bladder carcinoma cell line. We found all isolates adherent to T-24 cells within 15 min of infection. In invasion assay, all isolates could invade T-24 cells to a variable degree; 22.5% of them were found highly invasive. About 33% of isolates that do not have any recognized adhesins were as invasive as other isolates. The amplitude of invasiveness was also independent of the adhesins. In conclusion, this study demonstrates that type 1 fimbriae, P fimbriae, S fimbriae, and afimbrial adhesin I are not required for UPEC to adhere to and invade uroepithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号