首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Using confocal microscopy on immunofluorescence-stained cells, we have investigated the response of CDKN1A (p21), one of the key proteins involved in the DNA damage response pathway, after irradiation with accelerated lead or chromium ions. Each traversal of an accelerated ion leads to the formation of a single, bright focus of the CDKN1A protein in the nuclei of human fibroblasts within 2 min after irradiation at 4 degrees C. This immediate, localized CDKN1A response is specific for particle irradiation with a high linear energy transfer (LET), whereas X irradiation, after a period of induction, yields a diffusely spread pattern, in line with the differences in the microscopic dose deposition pattern of both radiation types. The particle-induced CDKN1A foci persist for several hours until they become diffuse and vanish. These findings suggest that CDKN1A accumulates at the sites of primary DNA damage, possibly mediated by the interaction with proteins involved in DNA repair. Here, for the first time, an immediate biological response confined to the radial extension of low-energy particle tracks ( approximately 1 micrometer) is directly visualized and correlated to ion traversals. This indicates that particle irradiation represents an ideal tool to study the processing of biological damage induced in defined subnuclear regions.  相似文献   

2.
Itoh T  Linn S 《DNA Repair》2005,4(12):1457-1462
p21(CDKN1A) is a critical regulator of cell cycle progression in response to DNA damage. There are conflicting conclusions as to whether p21(CDKN1A) levels increase or decrease after ultraviolet (UV)-irradiation and recently it was even reported to disappear entirely following 2.5-30 Jm(-2) of UV-irradiation in the presence of growth medium. The latter would suggest an alternative mechanism for cell cycle arrest after UV-irradiation, since p21(CDKN1A) induction has been considered to be the major mediator of p53-mediated cell cycle arrest after DNA damage. Using physiological UV doses based on cell-killing, we previously observed and here verify that low doses (1.2-6 Jm(-2)) induce p21(CDKN1A) immediately after UV-irradiation, though higher doses cause a latency during which p21(CDKN1A) levels remain fairly constant before increasing. As expected, p53 induction preceded p21(CDKN1A) induction at all doses. Thus, p21(CDKN1A) levels after low doses of UV-irradiation may be controlled in a p53-dependent manner without severe reduction. We propose that physiological relevant UV doses should be determined for each target cell type prior to studying UV-induced responses and that p21(CDKN1A) is indeed critical for cell cycle arrest in cells that survive UV-irradiation.  相似文献   

3.
Atherosclerotic is characterised by excessive proliferation of neointimal leukocytes and vascular smooth muscle cells (VSMCs). In mice, the manipulation of cell cycle inhibitors such as CDKN1B (p27) and CDKN1A (p21) modifies the risk of developing atherosclerosis. In humans, CDKN1A, CDKN1B, and CDKN1C (p57) are differentially expressed in normal versus atherosclerotic vessels. A DNA-polymorphism within the CDKN1B promoter has been associated with myocardial infarction (MI). In the present study, we analysed the effect of CDKN1A, CDKN1C, and CDKN2A (p16) polymorphisms on MI-risk. A total of 316 patients (all male,  相似文献   

4.
5.
Computerized video time lapse (CVTL) microscopy was used to observe cellular events induced by ionizing radiation (10-12 Gy) in nonclonogenic cells of the wild-type HCT116 colorectal carcinoma cell line and its three isogenic derivative lines in which p21 (CDKN1A), 14-3-3sigma or both checkpoint genes (double-knockout) had been knocked out. Cells that fused after mitosis or failed to complete mitosis were classified together as cells that underwent mitotic catastrophe. Seventeen percent of the wild-type cells and 34-47% of the knockout cells underwent mitotic catastrophe to enter generation 1 with a 4N content of DNA, i.e., the same DNA content as irradiated cells arrested in G(2) at the end of generation 0. Radiation caused a transient division delay in generation 0 before the cells divided or underwent mitotic catastrophe. Compared with the division delay for wild-type cells that express CDKN1A and 14-3-3sigma, knocking out CDKN1A reduced the delay the most for cells irradiated in G(1) (from approximately 15 h to approximately 3- 5 h), while knocking out 14-3-3sigma reduced the delay the most for cells irradiated in late S and G(2) (from approximately 18 h to approximately 3-4 h). However, 27% of wild-type cells and 17% of 14-3-3sigma(-/-) cells were arrested at 96 h in generation 0 compared with less than 1% for CDKN1A(-/-) and double-knockout cells. Thus expression of CDKN1A is necessary for the prolonged delay or arrest in generation 0. Furthermore, CDKN1A plays a crucial role in generation 1, greatly inhibiting progression into subsequent generations of both diploid cells and polyploid cells produced by mitotic catastrophe. Thus, in CDKN1A-deficient cell lines, a series of mitotic catastrophe events occurred to produce highly polyploid progeny during generations 3 and 4. Most importantly, the polyploid progeny produced by mitotic catastrophe events did not die sooner than the progeny of dividing cells. Death was identified as loss of cell movement, i.e. metabolic activity. Thus mitotic catastrophe itself is not a direct mode of death. Instead, apoptosis during interphase of both uninucleated and polyploid cells was the primary mode of death observed in the four cell types. Knocking out either CDKN1A or 14-3-3sigma increased the amount of cell death at 96 h, from 52% to approximately 70%, with an even greater increase to 90% when both genes were knocked out. Thus, in addition to effects of CDKN1A and 14-3-3sigma expression on transient cell cycle delay, CDKN1A has both an anti-proliferative and anti-apoptosis function, while 14-3-3sigma has only an anti-apoptosis function. Finally, the large alterations in the amounts of cell death did not correlate overall with the small alterations in clonogenic survival (dose-modifying ratios of 1.05-1.13); however, knocking out CDKN1A resulted in a decrease in arrested cells and an increase in survival, while knocking out 14-3-3sigma resulted in an increase in apoptosis and a decrease in survival.  相似文献   

6.
Exposure to ultraviolet (UV) radiation from sunlight accounts for 90% of the symptoms of premature skin aging and skin cancer. The tumor suppressor serine-threonine kinase LKB1 is mutated in Peutz-Jeghers syndrome and in a spectrum of epithelial cancers whose etiology suggests a cooperation with environmental insults. Here we analyzed the role of LKB1 in a UV-dependent mouse skin cancer model and show that LKB1 haploinsufficiency is enough to impede UVB-induced DNA damage repair, contributing to tumor development driven by aberrant growth factor signaling. We demonstrate that LKB1 and its downstream kinase NUAK1 bind to CDKN1A. In response to UVB irradiation, LKB1 together with NUAK1 phosphorylates CDKN1A regulating the DNA damage response. Upon UVB treatment, LKB1 or NUAK1 deficiency results in CDKN1A accumulation, impaired DNA repair and resistance to apoptosis. Importantly, analysis of human tumor samples suggests that LKB1 mutational status could be a prognostic risk factor for UV-induced skin cancer. Altogether, our results identify LKB1 as a DNA damage sensor protein regulating skin UV-induced DNA damage response.  相似文献   

7.
8.
The cyclin-dependent kinase inhibitor CDKN1A/p21 confers cell-cycle arrest in response to DNA damage and inhibits DNA replication through its direct interaction with the proliferating cell nuclear antigen (PCNA) and cyclin/cyclin-dependent kinase complexes. Previously, we reported that in response to densely ionizing radiation CDKN1A rapidly is recruited to the sites of particle traversal, and that CDKN1A foci formation in response to heavy ions is independent of its transactivation by TP53. Here, we show that exposure of normal human fibroblasts to X-rays or to H2O2 also induces nuclear accumulations of CDKN1A. We find that CDKN1A foci formation in response to radiation damage is dependent on its dephosphorylation and on its direct physical interaction with PCNA. Live cell imaging analyses of ectopically expressed EGFP-CDKN1A and dsRed-PCNA show rapid recruitment of both proteins into foci after radiation damage. Detailed dynamic measurements reveal a slightly delayed recruitment of CDKN1A compared to PCNA, which is best described by bi-exponential curve fitting, taking the preceding binding of PCNA to DNA into account. We propose a regulatory role for CDKN1A in mediating PCNA function after radiation damage, and provide evidence that this role is distinct from its involvement in nucleotide excision repair and unrelated to double-strand break repair.  相似文献   

9.
Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cell physiology, but many of which have no known function. CDKN1A/p21 is an important inhibitor of the cell-cycle, regulator of the DNA damage response and effector of the tumor suppressor p53, playing a crucial role in tumor development and prevention. In order to identify a regulator for tumor progression, we performed an siRNA screen of human lncRNAs required for cell proliferation, and identified a novel lncRNA, APTR, that acts in trans to repress the CDKN1A/p21 promoter independent of p53 to promote cell proliferation. APTR associates with the promoter of CDKN1A/p21 and this association requires a complementary-Alu sequence encoded in APTR. A different module of APTR associates with and recruits the Polycomb repressive complex 2 (PRC2) to epigenetically repress the p21 promoter. A decrease in APTR is necessary for the induction of p21 after heat stress and DNA damage by doxorubicin, and the levels of APTR and p21 are anti-correlated in human glioblastomas. Our data identify a new regulator of the cell-cycle inhibitor CDKN1A/p21 that acts as a proliferative factor in cancer cell lines and in glioblastomas and demonstrate that Alu elements present in lncRNAs can contribute to targeting regulatory lncRNAs to promoters.  相似文献   

10.
11.
Human chromosomal region 11p15.5, which is homologous to mouse chromosome region 7F5, is a well-known imprinted region. The CDKN1C/KCNQ1OT1 imprinted domain, which is one of two imprinted domains at 11p15.5, includes nine imprinted genes regulated by an imprinting center (IC). The CDKN1C/KCNQ1OT1 IC is a differentially methylated region of KCNQ1OT1(KCNQ1OT-DMR) with DNA methylation on the maternal allele and no methylation on the paternal allele. CDKN1C (alias p57KIP2), an imprinted gene with maternal expression, encoding a cyclin-dependent kinase inhibitor, is a critical gene within the CDKN1C/KCNQ1OT1 domain. In Beckwith-Wiedemann syndrome (BWS), approximately 50% of patients show loss of DNA methylation accompanied by loss of histone H3 Lys9 dimethylation on maternal KCNQ1OT-DMR, namely an imprinting disruption, leading to diminished expression of CDKN1C. In cancer, at least three molecular mechanisms--imprinting disruption, aberrant DNA methylations at the CDKN1C promoter, and loss of heterozygosity (LOH) of the maternal allele--are seen and all three result in diminished expression of CDKN1C. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain is involved in the development of both BWS and cancer and it changes the maternal epigenotype to the paternal type, leading to diminished CDKN1C expression. In this review, we describe recent advances in epigenetic control of the CDKN1C/KCNQ1OT1 imprinted domain in both humans and mice.  相似文献   

12.
13.
14.
15.
Hyperthermia is a potent radio enhancer. Studies using hypothermia in combination with irradiation have given confusing results due to lack of uniformity in experimental design. This report shows that hypothermia might have potential significance in the treatment of malignant cells with both thermo- and radiotherapy. Reuber H35 hepatoma cells, clone KRC-7 were used to study the effect of hypothermia on cell kinetics and subsequent response to hyperthermia and/or X rays. Cells were incubated at 8.5 degrees C or between 25 and 37 degrees C for 24 hr prior to hyperthermia or irradiation. Hypothermia caused sensitization to both hyperthermia and X rays. Maximum sensitization was observed between 25 and 30 degrees C and no sensitization was found at 8.5 degrees C. At 25 degrees C maximum sensitization was achieved in approximately 24 hr, cell proliferation was almost completely blocked, and cells gradually accumulated in the G2 phase of the cell cycle. In contrast to the effect of hypothermia on either hyperthermia or X rays alone, thermal radiosensitization was decreased in hypothermically pretreated cells (24 hr at 25 degrees C) compared to control cells (37 degrees C). The expression of thermotolerance and the rate of development at 37 degrees C after an initial heating at 42.5 degrees C were not influenced after preincubation at 25 degrees C for 24 hr. The expression of thermotolerance for heat or heat plus X rays during incubation at 41 degrees C occurred in a significantly smaller number of cells after 24 hr preincubation at 25 degrees C. The enhanced thermo- and radiosensitivity in hypothermically treated cells disappeared in approximately 6 hr after return to 37 degrees C.  相似文献   

16.
The cell cycle inhibitor p21CDKN1A has been shown to participate in nucleotide excision repair by interacting with PCNA. Here we have investigated whether p21 plays a role in base excision repair (BER), by analyzing p21 interactions with BER factors, and by assessing the response of p21?/? human fibroblasts to DNA damage induced by alkylating agents. Absence of p21 protein resulted in a higher sensitivity to alkylation-induced DNA damage, as indicated by reduced clonogenic efficiency, defective DNA repair (assessed by the comet test), and by persistence of histone H2AX phosphorylation. To elucidate the mechanisms at the basis of the function of p21 in BER, we focused on its interaction with poly(ADP-ribose) polymerase-1 (PARP-1), an important player in this repair process. p21 was found to bind the automodification/DNA binding domain of PARP-1, although some interaction occurred also with the catalytic domain after DNA damage. This association was necessary to regulate PARP-1 activity since poly(ADP-ribosylation) induced by DNA damage was higher in p21?/? human fibroblasts than in parental p21+/+ cells, and in primary fibroblasts after p21 knock-down by RNA interference. Concomitantly, recruitment of PARP-1 and PCNA to damaged DNA was greater in p21?/? than in p21+/+ fibroblasts. This accumulation resulted in persistent interaction of PARP-1 with BER factors, such as XRCC1 and DNA polymerase β, suggesting that prolonged association reduced the DNA repair efficiency. These results indicate that p21 regulates the interaction between PARP-1 and BER factors, to promote efficient DNA repair.  相似文献   

17.
18.
The cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates containing single-strand breaks, we found that full-length recombinant GST-tagged p21 but not a C-terminal domain truncated form of p21 was able to stimulate the PARP-1 binding to BER intermediates with no significant influence on the catalytic activity of PARP-1. In addition, we investigate whether the activation of PARP-1 through poly(ADP-ribose) (PAR) synthesis, is required for its interaction with p21. We have found that in human fibroblasts and in HeLa cells treated with the DNA alkylating agent N-methyl-N''-nitro-N-nitrosoguanidine (MNNG), the interaction of p21 with PARP-1 was greatly dependent on PAR synthesis. In fact, an anti-PAR antibody was able to co-immunoprecipitate p21 and PARP-1 from extracts of MNNG-treated cells, while blocking PAR synthesis with the PARP-1 inhibitor Olaparib, drastically reduced the amount of p21 co-immunoprecipitated by a PARP-1 antibody. Our results provide the first evidence that p21 can stimulate the binding of PARP-1 to DNA repair intermediates, and that this cooperation requires PAR synthesis.  相似文献   

19.
目的:验证CDKN1A是miR-93-5p直接调控的靶基因,阐明miR-93-5p可通过靶向CDKN1A促进人卵巢颗粒样肿瘤细胞系KGN的生长增殖.方法:选取我院2016年6月-2019年6月期间确诊的40例多囊卵巢综合征(PCOS)患者作为研究对象,qRT-PCR检测PCOS病变卵巢组织和病灶旁正常卵巢组织(对照)中...  相似文献   

20.
Molecular Biology Reports - CDKN1A gene encoding p21 is an important tumour supressor involved in the pathogenesis of cancers. A few studies have been devoted to the association between CDKN1A...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号