首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the mechanism underlying resistance to interferon (IFN) by the hepatitis C virus (HCV) in patients with chronic hepatitis, we attempted to develop an IFN-resistant HCV replicon from the IFN-sensitive 50-1 replicon established previously. By treating 50-1 replicon cells with a prolonged low-dose treatment of IFN-alpha and then transfecting the total RNA derived from the IFN-alpha-treated replicon cells, we successfully obtained four clones (named 1, 3, 4, and 5) of HCV replicon cells that survived against IFN-alpha (200 IU/ml). These cloned cells were further treated with IFN-alpha or IFN-beta (increased gradually to 2000 or 1000 IU/ml, respectively). This led to four replicon cell lines (alphaR series) possessing the IFN-alpha-resistant phenotype and four replicon cell lines (betaR series) possessing the IFN-beta-resistant phenotype. Furthermore, we obtained an additional replicon cell line (alphaRmix) possessing the IFN-alpha-resistant phenotype by two rounds of prolonged treatment with IFN-alpha and RNA transfection as mentioned above. Characterization of these obtained HCV replicon cell lines revealed that the betaR series were highly resistant to both IFN-alpha and IFN-beta, although the alphaR series containing alphaRmix were only partially resistant to both IFN-alpha and IFN-beta. Genetic analysis of these HCV replicons found one common amino acid substitution in the NS4B and several additional amino acid substitutions in the NS5A of the betaR series, suggesting that these genetic alterations are involved in the IFN resistance of these HCV replicons. These newly established HCV replicon cell lines possessing IFN-resistant phenotypes are the first useful tools for understanding the mechanisms by which HCV acquires IFN resistance in vivo.  相似文献   

2.
Guo JT  Zhu Q  Seeger C 《Journal of virology》2003,77(20):10769-10779
Hepatitis C virus (HCV) is the only known positive-stranded RNA virus that causes persistent lifelong infections in humans. Accumulation of HCV RNA can be inhibited with alpha interferon (IFN-alpha) in vivo and in culture cells. We used cell-based assay systems to investigate the mechanisms responsible for the cytokine-induced inhibition of HCV replication. The results showed that IFN-alpha could suppress the accumulation of viral RNA by a noncytopathic pathway and could also induce apoptosis of virally infected cells in a concentration- and cell line-dependent fashion. Whereas the noncytopathic IFN-alpha response depended on a functional Jak-STAT signal transduction pathway, it did not appear to require double-stranded RNA-dependent pathways. Moreover, we found that functional proteasomes were required for establishment of the IFN-alpha response against HCV. Based on the results described in this study we propose a model for the mechanism by which IFN-alpha therapy suppresses HCV replication in chronic infections by both cytopathic and noncytopathic means.  相似文献   

3.
IFN-alpha production by plasmacytoid dendritic cells (PDCs) is critical in antiviral immunity. In the present study, we evaluated the IFN-alpha-producing capacity of PDCs of patients with chronic hepatitis C virus (HCV) infection in treatment-naive, sustained responder, and nonresponder patients. IFN-alpha production was tested in PBMCs or isolated PDCs after TLR9 stimulation. Treatment-naive patients with chronic HCV infection had reduced frequency of circulating PDCs due to increased apoptosis and showed diminished IFN-alpha production after stimulation with TLR9 ligands. These PDC defects correlated with the presence of HCV and were in contrast with normal PDC functions of sustained responders. HCV core protein, which was detectable in the plasma of infected patients, reduced TLR9-triggered IFN-alpha and increased TNF-alpha and IL-10 production in PBMCs but not in isolated PDCs, suggesting HCV core induced PDC defects. Indeed, addition of rTNF-alpha and IL-10 induced apoptosis and inhibited IFN-alpha production in PDCs. Neutralization of TNF-alpha and/or IL-10 prevented HCV core-induced inhibition of IFN-alpha production. We identified CD14+ monocytes as the source of TNF-alpha and IL-10 in the HCV core-induced inhibition of PDC IFN-alpha production. Anti-TLR2-, not anti-TLR4-, blocking Ab prevented the HCV core-induced inhibition of IFN-alpha production. In conclusion, our results suggest that HCV interferes with antiviral immunity through TLR2-mediated monocyte activation triggered by the HCV core protein to induce cytokines that in turn lead to PDC apoptosis and inhibit IFN-alpha production. These mechanisms are likely to contribute to HCV viral escape from immune responses.  相似文献   

4.
While many clinical hepatitis C virus (HCV) infections are resistant to alpha interferon (IFN-alpha) therapy, subgenomic in vitro self-replicating HCV RNAs (HCV replicons) are characterized by marked IFN-alpha sensitivity. IFN-alpha treatment of replicon-containing cells results in a rapid loss of viral RNA via translation inhibition through double-stranded RNA-activated protein kinase (PKR) and also through a new pathway involving RNA editing by an adenosine deaminase that acts on double-stranded RNA (ADAR1). More than 200 genes are induced by IFN-alpha, and yet only a few are attributed with an antiviral role. We show that inhibition of both PKR and ADAR1 by the addition of adenovirus-associated RNA stimulates replicon expression and reduces the amount of inosine recovered from RNA in replicon cells. Small inhibitory RNA, specific for ADAR1, stimulated the replicon 40-fold, indicating that ADAR1 has a role in limiting replication of the viral RNA. This is the first report of ADAR's involvement in a potent antiviral pathway and its action to specifically eliminate HCV RNA through adenosine to inosine editing. These results may explain successful HCV replicon clearance by IFN-alpha in vitro and may provide a promising new therapeutic strategy for HCV as well as other viral infections.  相似文献   

5.
Recently we reported that on-site interferon (IFN)-alpha production in the liver using an adenovirus vector can achieve a substantial confinement of IFN-alpha in the target organ and can improve liver fibrosis in a rat liver cirrhosis model. However, the major therapeutic effect of IFN for hepatitis C virus (HCV)-associated liver diseases is its antiviral effect on HCV. As a prelude to the in vivo HCV infection experiment using a primate animal model, here we examined the antiviral effect of IFN-alpha gene transfer into HCV-positive hepatocytes in vitro. The non-neoplastic human hepatocyte cell line PH5CH8 was inoculated with HCV-positive serum. Successful in vitro HCV replication and thus the validity of this model was confirmed by a strong selection for HCV variants determined by sequence analysis of the hypervariable region and an increase of HCV RNA estimated by real time TaqMan RT-PCR. One day after the inoculation of HCV, PH5CH8 cells were infected with adenoviral vectors encoding human IFN-alpha cDNA. HCV completely disappeared 9 days after the adenoviral infection, which is linked to the increase of 2('),5(')-oligoadenylate synthetase activity, suggesting that IFN-alpha produced by gene transfer effectively inhibits HCV replication in hepatocytes. This study supports the development of IFN-alpha gene therapy for HCV-associated liver diseases.  相似文献   

6.
Hepatitis C virus (HCV) has evolved complex strategies to evade host immune responses and establish chronic infection. The only treatment available for HCV infections, alpha interferon (IFN-alpha), is effective in a limited percentage of patients. The mechanisms by which IFN-alpha interferes with the HCV life cycle and the reasons for limited effectiveness of IFN-alpha therapy have not yet been fully elucidated. Using a cell-based HCV replication system and specific kinase inhibitors, we examined the role played by various signaling pathways in the IFN-alpha-mediated HCV clearance. We reported that conventional protein kinase C (cPKC) activity is important for the effectiveness of IFN-alpha treatment. In cells treated with a cPKC-specific inhibitor, IFN-alpha failed to induce an efficient HCV RNA degradation. The lack of cPKC activity leads to a broad reduction of IFN-alpha-stimulated gene expression due to a significant impairment of STAT1 and STAT3 tyrosine phosphorylation. Thus, modulation of cPKC function by either host or viral factors could influence the positive outcome of IFN-alpha-mediated antiviral therapies.  相似文献   

7.
Lambda interferon inhibits hepatitis B and C virus replication   总被引:11,自引:0,他引:11       下载免费PDF全文
Lambda interferon (IFN-lambda) induces an intracellular IFN-alpha/beta-like antiviral response through a receptor complex distinct from the IFN-alpha/beta receptor. We therefore determined the ability of IFN-lambda to inhibit hepatitis B virus (HBV) and hepatitis C virus (HCV) replication. IFN-lambda inhibits HBV replication in a differentiated murine hepatocyte cell line with kinetics and efficiency similar to IFN-alpha/beta and does not require the expression of IFN-alpha/beta or IFN-gamma. Furthermore, IFN-lambda blocked the replication of a subgenomic and a full-length genomic HCV replicon in human hepatocyte Huh7 cells. These results suggest the possibility that IFN-lambda may be therapeutically useful in the treatment of chronic HBV or HCV infection.  相似文献   

8.
ABSTRACT: BACKGROUND: Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C patients. The mechanism of response to interferon-alpha (IFN-alpha) therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV) replication and IFN-alpha antiviral response in a cell culture model. METHODS: Sub-genomic replicon (S3-GFP) and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate) and unsaturated (oleate) long-chain free fatty acids (FFA). Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-alpha antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. RESULTS: FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP) cell line. FFA treatment also partially blocked IFN-alpha response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-beta promoter activation. We show that FFA treatment induces ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. CONCLUSION: These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN-alpha response in chronic hepatitis C (CHC).  相似文献   

9.
Effect of alpha interferon on the hepatitis C virus replicon   总被引:17,自引:0,他引:17       下载免费PDF全文
Guo JT  Bichko VV  Seeger C 《Journal of virology》2001,75(18):8516-8523
Chronic hepatitis C virus (HCV) infections can be cured only in a fraction of patients treated with alpha interferon (IFN-alpha) and ribavirin combination therapy. The mechanism of the IFN-alpha response against HCV is not understood, but evidence for a role for viral nonstructural protein 5A (NS5A) in IFN resistance has been provided. To elucidate the mechanism by which NS5A and possibly other viral proteins inhibit the cellular antiviral program, we have constructed a subgenomic replicon from a known infectious HCV clone and demonstrated that it has an approximately 1,000-fold-higher transduction efficiency than previously used subgenomes. We found that IFN-alpha reduced replication of HCV subgenomic replicons approximately 10-fold. The estimated half-life of viral RNA in the presence of the cytokine was about 12 h. HCV replication was sensitive to IFN-alpha independently of whether the replicon expressed an NS5A protein associated with sensitivity or resistance to the cytokine. Furthermore, our results indicated that HCV replicons can persist in Huh7 cells in the presence of high concentrations of IFN-alpha. Finally, under our conditions, selection for IFN-alpha-resistant variants did not occur.  相似文献   

10.
The recent development of infectious retroviral pseudotypes bearing hepatitis C virus (HCV) glycoproteins represents an opportunity to study the functionally active form of the HCV E1 and E2 glycoproteins. In the culture supernatant of cells producing HCV retroviral pseudotypes, the majority of E2 was not associated with infectious particles and failed to sediment on sucrose gradients. The E2 that was incorporated into infectious particles appeared as a triplet of diffuse bands at 60, 70, and 90 kDa. Similarly, three major forms of E1 were incorporated into the pseudotype particles, migrating at 33, 31, and 25 kDa. Endoglycosidase H (endo-H) treatment of particles demonstrated that the incorporated E1 was partially or completely sensitive to digestion. In contrast, the majority of the incorporated E2 was endo-H resistant. Purified pseudotype particles were found to contain both disulfide-linked aggregates and nonaggregated E1 and E2. HCV pseudotypes generated from cells expressing E1E2p7 showed similar heterogeneity in the incorporated glycoproteins and were of comparable infectivity to those generated by expression of E1E2. Our results demonstrate the heterogenous nature of E1 and E2 incorporated into retroviral pseudotypes and highlight the difficulty in identifying forms of the HCV glycoproteins that initiate infection.  相似文献   

11.
12.
Clearance of hepatitis C virus (HCV) infection in humans and chimpanzees is thought to be associated with the induction of strong T-cell responses. We studied four chimpanzees infected with HCV derived from an infectious full-length HCV genotype 1b cDNA. Two of the chimpanzees cleared the infection to undetectable levels for more than 12 months of follow-up; the other two became persistently infected. Detailed analyses of HCV-specific immune responses were performed during the courses of infection in these chimpanzees. Only weak and transient T helper responses were detected during the acute phase in all four chimpanzees. A comparison of the frequency of gamma interferon (IFN-gamma)-producing CD4(+) and CD8(+) T cells in peripheral blood by ELISpot assay did not reveal any correlation between viral clearance and T-cell responses. In addition, analyses of IFN-gamma, IFN-alpha, and interleukin-4 mRNA levels in liver biopsies, presumably indicative of intrahepatic T-cell responses, revealed no distinct pattern in these chimpanzees with respect to infection outcome. The present study suggests that the outcome of HCV infection in chimpanzees is not necessarily attributable to HCV sequence variation and that chimpanzees may recover from HCV infection by mechanisms other than the induction of readily detectable HCV-specific T-cell responses.  相似文献   

13.
14.
Chronic hepatitis C is a common cause of liver disease, the complications of which include cirrhosis and hepatocellular carcinoma. Treatment of chronic hepatitis C is based on the use of alpha interferon (IFN-alpha). Recently, indirect evidence based on mathematical modeling of hepatitis C virus (HCV) dynamics during human IFN-alpha therapy suggested that the major initial effect of IFN-alpha is to block HCV virion production or release. Here, we used primary cultures of healthy, uninfected human hepatocytes to show that: (i) healthy human hepatocytes can be infected in vitro and support HCV genome replication, (ii) hepatocyte treatment with IFN-alpha results in expression of IFN-alpha-induced genes, and (iii) IFN-alpha inhibits HCV replication in infected human hepatocytes. These results show that IFN-alpha acts primarily through its nonspecific antiviral effects and suggest that primary cultures of human hepatocytes may provide a good model to study intrinsic HCV resistance to IFN-alpha.  相似文献   

15.
Impaired APC functions may play important roles in chronicity of hepatitis C virus (HCV) and HIV infections. To investigate the separate and combined effects of HCV and HIV infection on immature dendritic cells (DCs), we evaluated myeloid-derived DC (MDC) and plasmacytoid-derived DC (PDC) frequencies and functions, measured by Toll-like receptor ligand-induced IFN-alpha and IL-12, in healthy controls and subjects with chronic HCV, HIV, and HCV-HIV infection. To evaluate the relation between innate and adaptive immunity, we measured HCV-specific IFN-gamma-producing T cell frequency. MDC frequencies tended to be reduced in HIV infection (1.8-fold), while PDC frequencies were minimally reduced in HCV infection (1.4-fold). In contrast, a striking reduction in non-PDC-associated IFN-alpha production was observed in HIV-infected subjects (17-fold), while PDC-associated IFN-alpha production was markedly reduced in HCV-infected subjects (20-fold). Both non-PDC and PDC functions were impaired in HCV-HIV coinfection. MDC-associated IL-12 production was markedly reduced in both HCV and HIV-infected subjects (over 10-fold). Functional defects were attenuated with slowly progressive HIV infection. The proportion of subjects with HCV-specific T cell responses, and the number of Ags recognized were reduced in HCV-HIV subjects as compared with HCV singly infected subjects. A positive association was observed between MDC-associated IL-12 production and HCV-specific T cell frequency in HCV-infected subjects. These results indicate that immature DC function is dysregulated in HIV and HCV infections, but differentially, and that these defects are attenuated in slowly progressive HIV infection. These selectively different impairments may contribute to the reduced adaptive immune response to HCV in HCV-HIV coinfection.  相似文献   

16.
pDC are known to produce large amount of IFN-alpha/beta in response to viruses, and act as a major link between the innate and adaptive immune response. This study concentrated on the interaction of human peripheral blood derived pDC with HCV NS3, NS4, and NS5 proteins, and their maturation, cytokine secretion and functional properties. It was shown that HCV NS5 interferes with CD40L induced maturation of pDC as indicated by decreased expression of CD83 and CD86 markers. CpG ODN stimulated HCV NS3 and NS5 treated pDC showed decreased production of IFN-alpha. In the case of NS3, IFN-alpha production was reduced to 126 pg/ml as compared to 245 pg/ml in controls (P < 0.01), and with NS5, IFN-alpha production was reduced to 92 pg/ml as compared to 238 pg/ml in controls (P < 0.05). In the presence of HCV NS5, the T cell stimulatory capacity of pDC was impaired, as indicated by decreased proliferation of T cells, and decreased production by the T cells of IFN-gamma, which were down to 86 pg/ml as compared to 260 pg/ml in controls (P < 0.05). These results suggest that HCV NS5 impairs pDC function and is in agreement with several other in vivo studies indicating decreased numbers of, and dysfunctional pDC, in chronic HCV infected patients.  相似文献   

17.
18.
19.
Jiang D  Guo H  Xu C  Chang J  Gu B  Wang L  Block TM  Guo JT 《Journal of virology》2008,82(4):1665-1678
Hepatitis C virus (HCV) infection is a common cause of chronic hepatitis and is currently treated with alpha interferon (IFN-alpha)-based therapies. However, the underlying mechanism of IFN-alpha therapy remains to be elucidated. To identify the cellular proteins that mediate the antiviral effects of IFN-alpha, we created a HEK293-based cell culture system to inducibly express individual interferon-stimulated genes (ISGs) and determined their antiviral effects against HCV. By screening 29 ISGs that are induced in Huh7 cells by IFN-alpha and/or up-regulated in HCV-infected livers, we discovered that viperin, ISG20, and double-stranded RNA-dependent protein kinase (PKR) noncytolytically inhibited the replication of HCV replicons. Mechanistically, inhibition of HCV replication by ISG20 and PKR depends on their 3'-5' exonuclease and protein kinase activities, respectively. Moreover, our work, for the first time, provides strong evidence suggesting that viperin is a putative radical S-adenosyl-l-methionine (SAM) enzyme. In addition to demonstrating that the antiviral activity of viperin depends on its radical SAM domain, which contains conserved motifs to coordinate [4Fe-4S] cluster and cofactor SAM and is essential for its enzymatic activity, mutagenesis studies also revealed that viperin requires an aromatic amino acid residue at its C terminus for proper antiviral function. Furthermore, although the N-terminal 70 amino acid residues of viperin are not absolutely required, deletion of this region significantly compromises its antiviral activity against HCV. Our findings suggest that viperin represents a novel antiviral pathway that works together with other antiviral proteins, such as ISG20 and PKR, to mediate the IFN response against HCV infection.  相似文献   

20.
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-alpha (IFN-alpha), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-alpha showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-alpha also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号