首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim at improving the transport of the current HIV protease inhibitors across the intestinal and blood brain barriers and their penetration into the central nervous system, the synthesis of various acyl and carbamatoyl glucose-containing prodrugs derived from saquinavir, indinavir and nelfinavir, their in vitro stability with respect to hydrolysis, and their anti-HIV activity have been investigated. D-Glucose, which is actively transported across these barriers, was connected through its 3-hydroxyl to these antiproteases via a linker. The liberation of the active free drug during the incubation time of the prodrugs with the cells was found to be crucial for HIV inhibition. The labile ester linking of the glucose-containing moiety to the peptidomimetic hydroxyl of saquinavir or to the indinavir C-8 hydroxyl, which is not part of the transition state isostere, is not an obstacle for anti-HIV activity. This is not the case for its stable carbamate linking to the peptidomimetic hydroxyl of saquinavir, indinavir and nelfinavir. The chemical stability with respect to hydrolysis of some of the saquinavir and indinavir prodrugs reported here, the liberation rate of the active free drug and the HIV inhibitory potency are acceptable for an in vivo use of these prodrugs. These glucose-linked ester and carbamate prodrugs display a promising therapeutic potential provided that their bioavailability, penetration into the HIV sanctuaries, and/or the liberation of the active free drug from the carbamate prodrugs are improved. Furthermore, no cytotoxicity was detected for the prodrugs for concentrations as high as 10 or even 100 microM, thus indicating an encouraging therapeutic index.  相似文献   

2.
3.
Human immunodeficiency virus (HIV) therapies have been associated with alterations in fat metabolism and bone mineral density. This study examined the effects of HIV protease inhibitors (PIs) on bone resorption, bone formation, and adipocyte differentiation using ex vivo cultured osteoclasts, osteoblasts, and adipocytes, respectively. Osteoclast activity, measured using a rat neonatal calvaria assay, increased in the presence of nelfinavir (NFV; 47.2%, p = 0.001), indinavir (34.6%, p = 0.001), saquinavir (24.3%, p = 0.001), or ritonavir (18%, p < 0.01). In contrast, lopinavir (LPV) and amprenavir did not increase osteoclast activity. In human mesenchymal stem cells (hMSCs), the PIs LPV and NFV decreased osteoblast alkaline phosphatase enzyme activity and gene expression significantly (p < 0.05). LPV and NFV diminished calcium deposition and osteoprotegrin expression (p < 0.05), whereas the other PIs investigated did not. Adipogenesis of hMSCs was strongly inhibited by saquinavir and NFV (>50%, p < 0.001) and moderately inhibited by ritonavir and LPV (>40%, p < 0.01). Expression of diacylglycerol transferase, a marker of adipocyte differentiation, decreased in hMSCs treated with NFV. Amprenavir and indinavir did not affect adipogenesis or lipolysis. These results suggest that bone and fat formation in hMSCs of bone marrow may be coordinately down-regulated by some but not all PIs.  相似文献   

4.
5.
Accelerated bone resorption leading to osteopenia and osteoporosis has been noted in human immunodeficiency virus (HIV) seropositive, treatment-naive patients, but it may be greatly increased in incidence in those receiving highly active anti-retroviral therapies that incorporate certain protease inhibitors (PI). The pathophysiology of these processes is unclear. We have documented the induction of the primary cytokine responsible for osteoclast differentiation and bone resorption, the receptor activator of nuclear factor kappa B ligand (RANKL), in T cells exposed to soluble HIV-1 envelope glycoprotein gp120. Using a murine osteoclast precursor cell line as well as primary human osteoclast precursors, we demonstrate that pharmacologic levels of two PIs that are linked clinically to osteopenia, ritonavir and saquinavir, abrogate a physiological block to RANKL activity, interferon-gamma-mediated degradation of the RANKL signaling adapter protein, TRAF6 (tumor necrosis factor receptor-associated protein 6) in proteasomes. In contrast, indinavir and nelfinavir, PIs that may promote or stabilize bone formation in vivo, had no impact on this system. These findings offer a molecular basis for the acceleration of bone resorption by certain PIs and provide the first example of clinically useful drugs that can interfere with the cross-talk between RANKL and interferon-gamma via the proteasome. They also suggest a novel therapeutic approach to HIV osteopenia through modulation of these two molecules.  相似文献   

6.
BACKGROUND: Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. PURPOSE AND PRINCIPAL FINDINGS: In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. CONCLUSIONS/SIGNIFICANCE: Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human pathogen.  相似文献   

7.
A simple, accurate and fast method was developed for determination of the commonly used HIV protease inhibitors (PIs) amprenavir, indinavir, atazanavir, ritonavir, lopinavir, nelfinavir, M8-nelfinavir metabolite and saquinavir in human plasma. Liquid-liquid extraction was used with hexane/ethylacetate from buffered plasma samples with a borate buffer pH 9.0. Isocratic chromatographic separation of all components was performed on an Allsphere hexyl HPLC column with combined UV and fluorescence detection. Calibration curves were constructed in the range of 0.025-10 mg/l. Accuracy and precision of the standards were all below 15% and the lowest limit of quantitation was 0.025 mg/l. Stability of quality control samples at different temperature conditions was found to be below 20% of nominal values. The advantages of this method are: (1) inclusion and determination of the newly approved atazanavir, (2) simultaneous isocratic HPLC separation of all compounds and (3) increased specificity and sensitivity for amprenavir by using fluorescence detection. This method can be used for therapeutic drug monitoring of all PIs currently commercialised and is now part of current clinical practice.  相似文献   

8.
We report a precise and accurate method for simultaneous quantification of protease inhibitors (PIs) amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir in plasma. An internal standard was added to samples prior to protein precipitation with acetonitrile followed by addition of ammonium formate buffer. Analysis was by HPLC-MS/MS. Calibration curves were validated over concentration ranges encompassing both subtherapeutic and potentially 'toxic' drug concentrations. Inter- and intra-assay variation were below 11% and PI recovery was above 87%. The bioanalytical method described is successfully applied to measure PI concentrations obtained from clinical pharmacokinetic studies and routine therapeutic drug monitoring (TDM).  相似文献   

9.
10.
The human immunodeficiency virus type 1 (HIV-1) protease mutation D30N is exclusively selected by the protease inhibitor (PI) nelfinavir and confers resistance to this drug. We demonstrate that D30N increases the susceptibility to saquinavir (SQV) and amprenavir in HIV-1 subtype B isolates and that the N88D mutation in a D30N background neutralizes this effect. D30N also suppresses indinavir (IDV) resistance caused by the M46I mutation. Interestingly, in patients with viruses originally containing the D30N mutation who were treated with IDV or SQV, the virus either reversed this mutation or acquired N88D, suggesting an antagonistic effect of D30N upon exposure to these PIs. These findings can improve direct salvage drug treatment in resource limited countries where subtype B is epidemiologically important and extend the value of first and second line PIs in these populations.  相似文献   

11.
12.
An understanding of the mechanisms of virologic cross-resistance between human immunodeficiency virus type 1 protease inhibitors is important for the establishment of effective treatment strategies for patients who no longer respond to their initial protease inhibitor. Protease gene sequencing results from patients treated with saquinavir showed significant increases in the frequency of the G48V protease mutation in patients receiving higher doses of the drug. In addition, all six patients who developed the G48V mutation during saquinavir therapy developed the V82A mutation either on continued saquinavir or after a switch to nelfinavir or indinavir. In vitro susceptibility assays showed that all 13 isolates with reduced susceptibilities to two or more protease inhibitors had either the G48V or L90M mutation, along with an average of six other protease mutations. Reduced susceptibility to nelfinavir was found in 14 isolates, but only 1 possessed the D30N mutation. These results suggest that mutations selected in vivo by initial saquinavir therapy may provide more cross-resistance to the other protease inhibitors than has been previously reported.  相似文献   

13.
A method for the analysis of six protease inhibitors and one metabolite has been developed and validated. Amprenavir, ritonavir, saquinavir, lopinavir, indinavir, nelfinavir, and an active metabolite of nelfinavir (M8) are quantitated using reversed-phase liquid chromatography coupled to tandem mass spectrometry, equipped with an electrospray ionization source (ESI-LC-MS-MS). The validation data presented here shows that the method allows the rugged analysis of these species from one aliquot. The evolution of complex drug interactions assessments and the clinical use of therapeutic drug monitoring for these antiretrovirals will be a potential immediate application of this method.  相似文献   

14.
New developments in anti-HIV chemotherapy   总被引:17,自引:0,他引:17  
  相似文献   

15.
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased Ki and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.  相似文献   

16.
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.  相似文献   

17.
Highly active antiretroviral therapy has been associated with the emergence of lipodystrophy syndromes that have clinical features commonly seen in patients with mitochondrial dysfunction. The effect of therapeutic protease inhibitors (PIs) on mitochondrial function is unknown. Mitochondrial matrix space proteins possess an amino-terminal leader peptide that is removed by the mitochondrial processing protease (MPP). Lack of cleavage could result in non- or dysfunctional mitochondrial proteins. The effects of different PIs on protease processing using pure MPP or yeast mitochondria, recognized models for mammalian counterparts, were examined in vitro. Multiple PIs were found to inhibit MPP, evidenced by accumulation of immature pALDH and decreased levels of processed ALDH. Both indinavir and amprenavir at 5.0 mg/ml resulted in significant inhibition of MPP. Although inhibition of MPP was also observed with ritonavir and saquinavir, the inhibition was difficult to quantify due to background inhibition of MPP by DMSO that was required to solubilize the drugs for the in vitro studies. Indinavir was also shown to inhibit MPP within yeast mitochondria. Lack of processing may impair mitochondrial function and contribute to the observed mitochondrial dysfunctions in patients receiving HAART and implicated in antiretroviral-associated lipodystrophy.  相似文献   

18.
Activation of the elongation factor 2 kinase (eEF2K) leads to the phosphorylation and inhibition of the elongation factor eEF2, reducing mRNA translation rates. Emerging evidence indicates that the regulation of factors involved in protein synthesis may be critical for controlling diverse biological processes including cancer progression. Here we show that inhibitors of the HIV aspartyl protease (HIV‐PIs), nelfinavir in particular, trigger a robust activation of eEF2K leading to the phosphorylation of eEF2. Beyond its anti‐viral effects, nelfinavir has antitumoral activity and promotes cell death. We show that nelfinavir‐resistant cells specifically evade eEF2 inhibition. Decreased cell viability induced by nelfinavir is impaired in cells lacking eEF2K. Moreover, nelfinavir‐mediated anti‐tumoral activity is severely compromised in eEF2K‐deficient engrafted tumors in vivo. Our findings imply that exacerbated activation of eEF2K is detrimental for tumor survival and describe a mechanism explaining the anti‐tumoral properties of HIV‐PIs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号