首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
In this study we characterised metacyclogenesis in axenic culture of Leishmania (Viannia) braziliensis, the causative agent of mucocutaneous leishmaniasis in the New World. Metacyclogenesis of other species of Leishmania has been shown by morphological changes as well as molecular modifications in the lipophosphoglycan, the major cell surface glycoconjugate of the promastigotes. In order to obtain metacyclic forms of L. braziliensis we tested a panel of different lectins. Our results showed that Bauhinia purpurea lectin facilitated the purification of metacyclic promastigotes from stationary-phase culture by negative selection. The B. purpurea non-agglutinated promastigotes had a slender short cell body and long flagella, typical of metacyclic morphology. The ultrastructural analysis showed that B. purpurea non-agglutinated promastigotes have a dense and thicker glycocalyx. They are resistant to complement lysis, and highly infective for macrophage in vitro and hamsters in vivo. Contrary to procyclic promastigotes, B. purpurea non-agglutinated forms were poorly recognised by sand fly gut epithelial cells. These results suggest that the B. purpurea non-agglutinated promastigotes are the metacyclic forms of L. braziliensis.  相似文献   

2.
Leishmania chagasi causes visceral leishmaniasis, a potentially fatal disease of humans. Within the sand fly vector, L. chagasi replicates as promastigotes which undergo complex changes in morphology as they progress from early stage procyclic promastigotes, to intermediate stage leptomonad and nectomonad promastigotes, and ultimately to terminal stage metacyclic promastigotes that are highly infective to vertebrates. This developmental progression is largely recapitulated in vitro using axenic promastigote cultures that have been passaged only a few times. Within a single passage (which takes about a week), axenic cultures progress from logarithmic to stationary growth phases; parasites within those growth phases progress from stages that do not have metacyclic cell properties to ones that do. Interestingly, repeated serial passage of promastigote cultures will result in cell populations that exhibit perturbations in developmental progression, in expression levels of surface macromolecules (major surface protease, MSP, and promastigote surface antigen, PSA), and in virulence properties, including resistance to serum lysis. Experiments were performed to determine whether there exists a direct relationship between promastigote developmental form and perturbations associated with repeated serial passage. Passage 2 to passage 4 L. chagasi cultures at stationary growth phase were predominately (>85%) comprised of metacyclic promastigotes and exhibited high resistance to serum lysis and high levels of MSP and PSA. Serial passaging 8, or more, times resulted in a stationary phase population that was largely (>85%) comprised of nectomonad promastigotes, almost completely devoid (<2%) of metacyclic promastigotes, and that exhibited low resistance to serum lysis and low levels of MSP and PSA. The study suggests that the loss of particular cell properties seen in cells from serially passaged cultures is principally due to a dramatic reduction in the proportion of metacyclic promastigotes. Additionally, the study suggests that serially passaged cultures may be a highly enriched source of nectomonad-stage promastigotes, a stage that has largely been characterized only in mixtures containing other promastigote forms.  相似文献   

3.
Infection of dendritic cells by the human protozoal parasite Leishmania is part of its survival strategy. The dendritic cell receptors for Leishmania have not been established and might differ in their interactions among Leishmania species and infective stages. We present evidence that the surface C-type lectin DC-SIGN (CD 209) is a receptor for promastigote and amastigote infective stages from both visceral (Leishmania infantum) and New World cutaneous (Leishmania pifanoi) Leishmania species, but not for Leishmania major metacyclic promastigotes, an Old World species causing cutaneous leishmaniasis. Leishmania binding to DC-SIGN was found to be independent of lipophosphoglycan, the major glycoconjugate of the promastigote plasma membrane. Our findings emphasize the relevance of DC-SIGN in Leishmania-dendritic cell interactions, an essential link between innate and Leishmania-specific adaptive immune responses, and suggest that DC-SIGN might be a therapeutic target for both visceral and cutaneous leishmaniasis  相似文献   

4.
At the end of their growth in the sand fly, Leishmania parasites differentiate into the infective metacyclic promastigote stage, which is transmitted to the mammalian host. Thus, in experimental studies of parasite infectivity toward animals or macrophages, the use of purified metacyclics is generally preferred. While metacyclics of several Leishmania species can be efficiently purified with the aid of lectins or monoclonal antibodies, which differentially exploit stage-specific differences in the structure of the abundant surface glycolipid lipophosphoglycan (LPG), such reagents are unavailable for most species and they are unsuitable for studies involving LPG-deficient mutants. Here we describe a simple density gradient centrifugation method, which allows the rapid purification of infective metacyclic parasites from both wild-type and LPG-deficient Leishmania major. The purified metacyclic promastigotes are authentic, as judged by criteria such as their morphology, expression of the metacyclic-specific gene SHERP, and ability to invade and replicate within macrophages in vitro. Preliminary studies suggest that this method is applicable to other Leishmania species including L. donovani.  相似文献   

5.
The Leishmania lipophosphoglycan conveys the ability for the parasites to avoid destruction in diverse host environments. During its life cycle within the sand fly vector, the parasite differentiates from a dividing procyclic promastigote stage that avoids expulsion from the midgut by attaching to the gut wall, to a nondividing metacyclic promastigote stage that is unable to attach to the midgut and migrates to the mouth parts for reinfection of a mammalian host. Lipophosphoglycan plays an integral role during this transition. Structurally, lipophosphoglycan is a multidomain glycoconjugate whose polymorphisms among species lie in the backbone Gal(beta 1,4)Man(alpha 1)-PO(4) repeating units and the oligosaccharide cap. We have characterized the lipophosphoglycan from an Indian L. donovani isolate. Unlike East African isolates, which express unsubstituted repeats and a galactose- and mannose-terminating cap, procyclic lipophosphoglycan from the Indian isolate consists of beta1,3-linked glucose residues that branch off the backbone repeats (n approximately 17) and also terminate the cap. Of biological significance, metacyclic lipophosphoglycan lacks the glucose residues while doubling the number of repeats. The importance of these developmental modifications in lipophosphoglycan structure was determined using binding experiments to Phlebotomus argentipes midguts. Procyclic promastigotes and procyclic LPG were able to bind to sand fly midguts in vitro whereas metacyclic parasites and LPG lost this capacity. These results demonstrate that the Leishmania adapts the synthesis of terminally exposed sugars of its LPG to manipulate parasite-sand fly interactions.  相似文献   

6.
Metacyclic promastigotes are transmitted during bloodmeals after development inside the gut of the sandfly vector. The isolation from axenic cultures of procyclic and metacyclic promastigotes by peanut lectin agglutination followed by differential centrifugation is controversial in Leishmania infantum. The purpose of this study has been to isolate both fractions simultaneously from the same population in stationary phase of axenic culture and compare their expression profiles by whole-genome shotgun DNA microarrays. The 317 genes found with meaningful values of stage-specific regulation demonstrate that negative selection of metacyclic promastigotes by PNA agglutination is feasible in L. infantum and both fractions can be isolated. This subpopulation up-regulates a cysteine peptidase A and several genes involved in lipophosphoglycan, proteophosphoglycan and glycoprotein biosynthesis, all related with infectivity. In fact, we have confirmed the increased infection rate of PNA promastigotes by U937 human cell line infection experiments. These data support that metacyclic promastigotes are related with infectivity and the lack of agglutination with PNA is a phenotypic marker for this subpopulation.  相似文献   

7.
The cellular ultrastructure and surface glycoconjugate expression of three life stages of Leishmania major were compared. Noninfective logarithmic phase promastigotes (LP) are immature cells bearing a thin cell coat, short flagellum, small and empty flagellar pocket, and a loose cytoplasm filled with profiles of ER and large Golgi complex. LP also contain subpopulations of maturing cells containing less ER and Golgi and synthesizing cytoplasmic granules of different size, number, and electron-density. Infective or metacyclic promastigotes (MP) are fully differentiated nondividing forms with a thickened, prominent cell coat, long flagellum, distended flagellar pocket filled with secretory material, and few cytoplasmic organelles other than abundant electron-dense granules. Tissue amastigotes also contain electron-dense cytoplasmic granules, their flagellar pockets are also enlarged and contain secretory material, but they lack a discernable cell coat. Immunogold labeling of GP63 on the cell surface was extensive only on amastigotes. Promastigote GP63 appeared to be masked by the presence of a densely packed lipophosphoglycan (LPG) coat which was extensively labeled on the entire surface of MP and LP. An elongated, developmentally modified form of LPG was abundantly labeled only on MP. LPG was poorly labeled on amastigotes, arguing that the promastigote cell coat is a stage-specific structure which is lost during intracellular transformation.  相似文献   

8.
A monoclonal antibody, 3F12, was generated which reacted specifically against infective or metacyclic stage Leishmania major promastigotes, but not with noninfective promastigotes obtained from log phase cultures. The antibody recognized a cell surface and released molecule that could be metabolically labeled with [14C]glucose, [3H]mannose, [3H]galactose, and [3H]palmitic acid, but not with [35S]methionine or [3H]leucine. The molecule was the major species surface-labeled by [3H]sodium borohydride after periodate treatment. The glycolipid appeared to be shed primarily as free carbohydrate because 70% of the released material partitioned in the aqueous fraction after phase separation in TX-114. The molecule could be distinguished from the L. major glycolipid which has already been extensively described because its migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was of higher relative m.w. However, a close relationship between the two molecules was indicated by the finding that another monoclonal antibody, WIC-79.3, recognized both forms of the glycolipid; one produced and released only by log phase promastigotes, and one produced and released only by metacyclic promastigotes. The loss of agglutination with peanut agglutinin which has been shown to accompany metacyclogenesis was found to be caused by the loss of expression of the log form of the glycolipid which in most cases appeared to be the result of the developmental modification of this molecule. A survey of a number of virulent and avirulent. L. major strains and clones reinforced an absolute association between the ability of these promastigotes to initiate infection in BALB/c mice and their expression and release of the 3F12-binding, developmentally regulated form of the glycolipid. Not only does this glycolipid serve as the first well defined molecular marker for infective stage metacyclic promastigotes, but its unique structure is very likely to contribute to the adaptive changes that allow these parasites to survive within the vertebrate host.  相似文献   

9.
Metacyclogenesis is a process whereby Leishmania transforms from poorly infective procyclic promastigotes into highly infective metacyclic promastigotes. In nature, metacyclogenesis occurs in the insect vector. This transformation is accompanied by an increased ability to infect and survive in the vertebrate host, where the parasite is attacked by the host's immune system. Metacyclogenesis has also been shown to occur in axenic cultures of promastigotes. Morphological changes in size and shape, and length of flagellum were first associated with differentiation in the insect gut and in different phases of growth in culture. Later, the expression of molecules such as LPG and the surface protease gp63 were associated with this process. These two molecules were observed to undergo qualitative and quantitative modifications as the promastigotes differentiated from procyclic to metacyclic forms. Using cDNA subtractive hybridization-based methods or differential amplification, previously unknown genes tightly linked to metacyclogenesis have been identified. Gene products exclusively expressed in metacyclic promastigotes included a gene B product and Mat-1--a gene associated with metacyclogenesis. Other proteins, Meta-1, SHERP and HASP, were up-regulated during the metacyclic stage. The function and stage-regulated expression of these molecules and their relationship with infectivity are now under investigation.  相似文献   

10.
At key steps in the infectious cycle pathogens must adhere to target cells, but at other times detachment is required for transmission. During sand fly infections by the protozoan parasite Leishmania major, binding of replicating promastigotes is mediated by galactosyl side chain (scGal) modifications of phosphoglycan repeats of the major surface adhesin, lipophosphoglycan (LPG). Release is mediated by arabinosyl (Ara) capping of LPG scbetaGal residues upon differentiation to the infective metacyclic stage. We used intraspecific polymorphisms of LPG structure to develop a genetic strategy leading to the identification of two genes (SCA1/2) mediating scAra capping. These LPG side chain beta1,2-arabinosyltransferases (scbetaAraTs) exhibit canonical glycosyltransferase motifs, and their overexpression leads to elevated microsomal scbetaAraT activity. Although the level of scAra caps is maximal in metacyclic parasites, scbetaAraT activity is maximal in log phase cells. Because quantitative immunolocalization studies suggest this is not mediated by sequestration of SCA scbetaAraTs away from the Golgi apparatus during log phase, regulation of activated Ara precursors may control LPG arabinosylation in vivo. The SCA genes define a new family of eukaryotic betaAraTs and represent novel developmentally regulated LPG-modifying activities identified in Leishmania.  相似文献   

11.
Development of Leishmania parasites in the digestive tract of their sandfly vectors involves several morphological transformations from the intracellular mammalian amastigote via a succession of free and gut wall-attached promastigote stages to the infective metacyclic promastigotes. At the foregut midgut transition of Leishmania-infected sandflies a gel-like plug of unknown origin and composition is formed, which contains high numbers of parasites, that occludes the gut lumen and which may be responsible for the often observed inability of infected sandflies to draw blood. This "blocked fly" phenotype has been linked to efficient transmission of infectious metacyclic promastigotes from the vector to the mammalian host. We show by immunofluorescence and immunoelectron microscopy on two Leishmania/sandfly vector combinations (Leishmania mexicana/Lutzomyia longipalpis and L. major/Phlebotomus papatasi) that the gel-like mass is formed mainly by a parasite-derived mucin-like filamentous proteophosphoglycan (fPPG) whereas the Leishmania polymeric secreted acid phosphatase (SAP) is not a major component of this plug. fPPG forms a dense three-dimensional network of filaments which engulf the promastigote cell bodies in a gel-like mass. We propose that the continuous secretion of fPPG by promastigotes in the sandfly gut, that causes plug formation, is an important factor for the efficient transmission to the mammalian host.  相似文献   

12.
The stage‐regulated HASPB and SHERP proteins of Leishmania major are predominantly expressed in cultured metacyclic parasites that are competent for macrophage uptake and survival. The role of these proteins in parasite development in the sand fly vector has not been explored, however. Here, we confirm that expression of HASPB is detected only in vector metacyclic stages, correlating with the expression of metacyclic‐specific lipophosphoglycan and providing the first definitive protein marker for this infective sand fly stage. Similarly, SHERP is expressed in vector metacyclics but is also detected at low levels in the preceding short promastigote stage. Using genetically modified parasites lacking or complemented for the LmcDNA16 locus on chromosome 23 that contains the HASP and SHERP genes, we further show that the presence of this locus is essential for parasite differentiation to the metacyclic stage in Phlebotomus papatasi. While wild‐type and complemented parasites transform normally in late‐stage infections, generating metacyclic promastigotes and colonizing the sand fly stomodeal valve, null parasites accumulate at the earlier elongated nectomonad stage of development within the abdominal and thoracic midgut of the sand fly. Complementation with HASPB or SHERP alone suggests that HASPB is the dominant effector molecule in this process.  相似文献   

13.
Protozoan parasites of the genus Leishmania cause a number of important human diseases. One of the key determinants of parasite infectivity and survival is the surface glycoconjugate lipophosphoglycan (LPG). In addition, LPG is shown to be useful as a transmission blocking vaccine. Since culture supernatant of parasite promastigotes is a good source of LPG, we made attempts to characterize functions of the culture supernatant, and membrane LPG isolated from metacyclic promastigotes of Leishmania major. The purification scheme included anion-exchange chromatography, hydrophobic interaction chromatography and cold methanol precipitation. The purity of supernatant LPG (sLPG) and membrane LPG (mLPG) was determined by SDS-PAGE and thin layer chromatography. The effect of mLPG and sLPG on nitric oxide (NO) production by murine macrophages cell line (J774.1A) was studied. Both sLPG and mLPG induced NO production in a dose dependent manner but sLPG induced significantly higher amount of NO than mLPG. Our results show that sLPG is able to promote NO production by murine macrophages.  相似文献   

14.
Protozoan parasites of the genus Leishmania produce the novel surface glycoconjugate, lipophosphoglycan (LPG), which is required for parasite infectivity. In this study we show that LPG structure is modified during the differentiation of L. major promastigotes from a less infectious form in logarithmic growth phase to a highly infectious 'metacyclic' form during stationary growth phase. In both stages, the LPGs comprise linear chains of phosphorylated oligosaccharide repeat units which are anchored to the membrane via a glycosyl-phosphatidylinositol glycolipid anchor. During metacyclogenesis there is (i) an approximate doubling in the average number of repeat units per molecule from 14 to 30, (ii) a pronounced decrease in the relative abundance of repeat units with side chains of beta Gal or Gal beta 1-3Gal beta 1-, and a corresponding increase in repeat units with either no side chains or with side chains of Arap alpha 1-2 Gal beta 1- and (iii) a decrease in the frequency with which the glycolipid anchor is substituted with a single glucose alpha 1-phosphate residue. While the majority of the LPG phosphoglycan chains are capped with the neutral disaccharide, Man alpha 1-2Man, a significant minority of the chains appeared to terminate in non-phosphorylated repeat units and may represent incompletely capped species. We suggest that the developmental modification of LPG may be important in modulating the binding of promastigotes to receptors in the sandfly midgut and on human macrophages and in increasing the resistance of metacyclic promastigotes to complement-mediated lysis.  相似文献   

15.
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95–100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host–parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild‐type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI‐link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti‐prohibitin antibodies during macrophage–Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania–host interaction.  相似文献   

16.
Leishmania donovani ADP-ribosylation factor-like protein 3A (LdARL-3A) is a small G protein isolated from the protozoan parasite L. donovani with no defined physiological function. Previously [Cuvillier, A., Redon, F., Antoine, J.-C., Chardin, P., DeVos, T., and Merlin, G. (2000) J Cell Sci 113: 2065-2074] we have shown that overexpression in L. amazonensis promastigotes of the mutated protein LdARL-3A-Q70L, which remains constitutively associated with GTP, leads to the disappearance of the flagellum but does not impair cell viability or growth. Here we report that parasites overexpressing LdARL-3A-Q70L can invade in vitro cultivated macrophages to the same extent as control cells, demonstrating that the flagellum is not necessary for attachment to or engulfment into macrophages. These infections are productive because amastigotes differentiate and multiply. However, aflagellated LdARL-3A-Q70L-overexpressing Leishmania promastigotes could not survive in experimentally infected Lutzomyia longipalpis insect vectors, in contrast to untransfected or native LdARL-3A-overexpressing cells. Overexpression of the native and mutated proteins did not modify in vitro procyclic to metacyclic lipophosphoglycan maturation or differentiation from procyclic to metacyclic promastigotes, nevertheless there is a block in transmission of Leishmania. Better understanding of LdARL-3A pathways, notably those regarding flagellum biogenesis, may lead to the future development of Leishmania-specific drugs, which may stop parasite transmission in nature without affecting other species.  相似文献   

17.
The mechanism of serum resistance for infective promastigotes of Leishmania major was investigated. Prior results suggested that the mechanism of resistance was mediated at a step after C3 deposition. Equivalent amounts of C3b were deposited on serum-susceptible, noninfective promastigotes harvested from log stage cultures (LOG) and on C-resistant, infective, metacyclic promastigotes (MP) purified from stationary stage cultures. Whereas binding of C9 to LOG was stable during incubation in serum, C9 binding to MP was minimal and unstable, because molecules bound initially to MP were released with continued incubation. Failure to bind C9 was not a result of inability to activate C; the kinetics of C3, C6, and C9 consumption were similar for LOG and MP. Deposition of C5b-7 on MP was stable, indicating that the initial steps in terminal complex formation were intact. Instead, the majority of C5b-9 formed on MP was spontaneously released into the serum as SC5b-9. Residual C5b-9 on MP was released with 1 M NaCl. These data show that developmental modification of the promastigote membrane during transition from a noninfective to an infective stage blocks insertion of lytic C5b-9 into the promastigote membrane.  相似文献   

18.
Sequential development of Leishmania braziliensis promastigotes from a noninfective to an infective stage was demonstrated. The generation of infective forms was related to their growth cycle and restricted to stationary stage organisms. Using immunofluorescence techniques, we have noticed that the binding of a monoclonal antibody (mAb) against L. braziliensis (VD5/25) increased progressively as the promastigotes developed in culture and was maximal with the infective forms. This antigenic differentiation was not detected with an anti-L. braziliensis polyclonal rabbit antiserum, suggesting that only a few epitopes, including that recognized by VD5/25, have their expression effectively increased on the surface of infective promastigotes. Immunoprecipitation of lysates of surface-iodinated L. braziliensis promastigotes with this mAb revealed two proteins of apparent 65,000 and 50,000 Mr, the 50,000 Mr protein probably representing the unreduced form of the major surface glycoprotein described in several species of Leishmania (GP65). The increasing expression of this epitope was not found with L. chagasi promastigotes, but seems to occur with the parasites from the L. mexicana complex. Intracellular survival of L. braziliensis was completely inhibited when the infective promastigotes were treated with VD5/25. It appears, therefore, that the increasing expression of GP65 on the promastigote surface represents an essential mechanism of leishmania survival in the macrophage.  相似文献   

19.
Markedly elevated titers of anti-leishmanial antibodies are a hallmark of kala-azar. We investigated the role played by the lipophosphoglycan (LPG) in determining the reactivity of kala-azar serum with the surface of Leishmania donovani promastigotes. In assays performed with liver parasites there was negligible agglutination or fluorescent staining of LPG-bearing promastigotes by kala-azar serum, but strong reactivity in both assays with the use of an L. donovani mutant strain (R2D2) that lacks surface expression of LPG. Immunoprecipitation of lysates of 125I surface-labeled promastigotes indicated that kala-azar serum has reactivity with several surface proteins common to both the wild-type and R2D2 strains, and no reactivity with surface proteins unique to R2D2. Although direct ELISA showed that kala-azar serum recognizes purified promastigote LPG, inhibition ELISA suggested that such recognition is based solely upon reactivity with the normally unexposed core-anchor region of the molecule. We conclude that the poor reactivity of kala-azar serum with the surface of L. donovani promastigotes is caused by its lack of recognition of the exposed phosphodisaccharide repeat units of LPG, which in turn effectively mask the surface molecules that are recognized by kala-azar serum antibodies.  相似文献   

20.
Leishmania alternates between two main morphological forms in its life cycle: intracellular amastigotes in the mammalian host and motile promastigotes in the sandfly vector. Several different forms of promastigote can be recognised in sandfly infections. The first promastigote forms, which are found in the sandfly in the bloodmeal phase, are multiplicative procyclic promastigotes. These differentiate into nectomonad promastigotes, which are a non-dividing migratory stage moving from the posterior to the anterior midgut. When nectomonad promastigotes arrive at the anterior midgut they differentiate into leptomonad forms, a newly named life cycle stage, which resume replication. Leptomonad promastigotes, which are found in the anterior midgut, are the developmental precursors of the metacyclic promastigotes, the mammal-infective stages. Leptomonad forms also produce promastigote secretory gel, a substance that plays a key role in transmission by forming a physical obstruction in the gut, forcing the sandfly to regurgitate metacyclic promastigotes during bloodfeeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号