首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positional identity in the visual system affects the topographic projection of the retina onto its central targets. In this review we discuss gradients and positional information in the retina, when and how they arise, and their functional significance in development. When the axons of retinal ganglion cells leave the eye, they navigate through territory in the central nervous system that is rich in positional information. We review studies that explore the navigational cues that the growth cones of retinal axons use to orient towards their target and organize themselves as they make this journey. Finally, these axons arrive at their central targets and make a precise topographic map of visual space that is crucial for adaptive visual behavior. In the last section of this review, we examine the topographic cues in the tectum, what they are, when, and how they arise, and how retinal axons respond to them. We also touch on the role of neural activity in the refinement of this topography. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
We acquire information from the outside world through our eyes which contain the retina, the photosensitive component of the central nervous system. Once the adult mammalian retina is damaged, the retinal neuronal death causes a severe loss of visual function. It has been believed that the adult mammalian retina had no regenerative capacity. However, the identification of neuronal progenitor cells in the retina sheds some light on cellular therapies for damaged retinal regeneration. In this review, we highlight three potential stem/progenitor cells in the eye, the ciliary body epithelium cells, the iris pigmented epithelium cells, and Müller glia. In order to make them prime candidates for the possible treatment of retinal diseases, it is important to understand their basic characters. In addition, we discuss the key signaling molecules that function extracellularly and determine whether neuronal progenitors remain quiescent, proliferate, or differentiate. Finally, we introduce a secreted protein, Tsukushi, which is a possible candidate as a niche molecule for retinal stem/progenitor cells.  相似文献   

3.
In this review, we discuss current information about a cell-cellrecognition protein present in chick embryo neural retina. Thisprotein, retina cognin, has cell adhesion or aggregation promotingpropertiesin vitro. We discuss five questions. First, what isretina cognin (R-cognin)? Second, what do we know about cogninin chick retina? We discuss its histological distribution inretina and how that distribution changes during embryonic andearly post-hatching development. Third, where is cognin withincells? We review light microscopy evidence for its localizationin plasma membranes of somas and neurites of selected retinalneurons as an intrinsic membrane protein. Fourth, how is cognindistributed in membranes? We summarize evidence that cogninmight not be uniformly distributed over cellsurfaces and thatit might bind to specific proteins on the surfaces of otherretina cells. From the available information, we ask what wecan deduce about cognin's biological role in the neural retina.  相似文献   

4.
Firth SI  Wang CT  Feller MB 《Cell calcium》2005,37(5):425-432
A characteristic feature of developing neural networks is spontaneous periodic activity. In the developing retina, retinal ganglion cells fire bursts of action potentials that drive large increases in intracellular calcium concentration with a periodicity of minutes. These periodic bursts of action potentials propagate across the developing inner retina as waves, driving neighboring retinal ganglion cells to fire in a correlated fashion. Here we will review recent progress in elucidating the mechanisms in mammals underlying retinal wave propagation and those regulating the periodicity with which these retinal waves occur. In addition, we will review recent experiments indicating that retinal waves are critical for refining retinal projections to their primary targets in the central visual system and may be involved in driving developmental processes within the retina itself.  相似文献   

5.
Various advances have been made in the treatment of retinal diseases, including new treatment strategies and innovations in surgical devices. However, the treatment of degenerative retinal diseases, such as retinitis pigmentosa (RP) and age‐related macular degeneration (AMD), continues to pose a significant challenge. In this review, we focus on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to treat retinal diseases by harnessing the ability of stem cells to differentiate into different body tissues. The retina is a tissue specialized for light sensing, and its degradation leads to vision loss. As part of the central nervous system, the retina has very low regenerative capability, and therefore, treatment options are limited once it degenerates. Nevertheless, innovations in methods to induce the generation of retinal cells and tissues from ESCs/iPSCs enable the development of novel approaches for these irreversible diseases. Here we review some historical background and current clinical trials involving the use of stem‐cell‐derived retinal pigment epithelial cells for AMD treatment and stem cell‐derived retinal cells/tissues for RP therapy. Finally, we discuss our future vision of regenerative treatment for retinal diseases with a partial focus on our studies and introduce other interesting approaches for restoring vision.  相似文献   

6.
Polarity is a fundamental property of epithelial cells. In this review, we discuss our current knowledge of the polarity of a stratified epithelium, the epidermis, focusing on similarities and differences with simple epithelial models. We highlight how the differences in tissue architecture and physiology result in alterations in some aspects of cell polarity. In addition, we discuss one of the most prominent uses for cell polarity in the epidermis-orienting the mitotic spindle to drive the stratification and differentiation of this tissue during development.  相似文献   

7.
Retinas of all classes of vertebrates contain endogenous circadian clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis, and cellular events such as rod disk shedding, intracellular signaling pathways, and gene expression. The vertebrate retina is an example of a "peripheral" oscillator that is particularly amenable to study because this tissue is well characterized, the relationships between the various cell types are extensively studied, and many local clock-controlled rhythms are known. Although the existence of a photoreceptor clock is well established in several species, emerging data are consistent with multiple or dual oscillators within the retina that interact to control local physiology. A prominent example is the antiphasic regulation of melaton in and dopamine in photoreceptors and inner retina, respectively. This review focuses on the similarities and differences in the molecular mechanisms of the retinal versus the SCN oscillators, as well as on the expression of core components of the circadian clockwork in retina. Finally, the interactions between the retinal clock(s) and the master clock in the SCN are examined.  相似文献   

8.
9.
In this review, we discuss about current knowledge about stem cell(SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study ’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions.  相似文献   

10.
This review summarizes the present knowledge concerning the retinal localization of the nerve growth factor (NGF), its precursor proNGF, and the receptors TrkA and p75NTR in the developing and mature rodent retina. We further discuss the changes in the expression of NGF and the receptors in experimental models of retinal disorders and diseases like inherited retinitis pigmentosa, retinal detachment, glaucoma, and diabetic retinopathy. Since proNGF is now recognized as a bioactive signaling molecule which induces cell death through p75NTR activation, the role of proNGF in the induction of retinal cell loss under neurodegenerative conditions is also highlighted. In addition, we present the evidences for a potential therapeutic intervention with NGF for the treatment of retinal neurodegenerative diseases. Different strategies have been developed and experimentally tested in mice and rats in order to reduce cell loss and Müller cell gliosis, e.g., increasing the availability of endogenous NGF, administration of exogenous NGF, activation of TrkA, and inhibition of p75NTR. Here, we discuss the several lines of evidence supporting a protective effect of NGF on retinal cell loss, with specific emphasis on photoreceptor and retinal ganglion cell degeneration. A better understanding of the mechanisms underlying the effects of NGF and proNGF in the modulation of neurodegeneration and gliosis in the retina will help to develop efficient therapeutic strategies for various retinal diseases.  相似文献   

11.
Tissue culture technology applied to ophtalmology has produced an extensive knowledge of ocular cell physiology. In this work, we review the various factors known to control proliferation and differentiation in lens epithelial cells and corneal endothelial cells. We discuss the role of a new ocular growth factor that we discovered in the retina and whose ubiquitous distribution suggests that it could be involved in tissue-tissue interactions.  相似文献   

12.
13.
Mounting evidence demonstrates that glial cells might have important roles in regulating the physiology and behavior of adult animals. We summarize some of this evidence here, with an emphasis on the roles of glia of the differentiated nervous system in controlling neuronal excitability, behavior and plasticity. In the review we highlight studies in Drosophila and discuss results from the analysis of mammalian astrocytes that demonstrate roles for glia in the adult nervous system.  相似文献   

14.
NPY is present in the retina of different species but its role is not elucidated yet. In this work, using different rat retina in vitro models (whole retina, retinal cells in culture, microglial cell cultures, rat Müller cell line and retina endothelial cell line), we demonstrated that NPY staining is present in the retina in different cell types: neurons, macroglial, microglial and endothelial cells. Retinal cells in culture express NPY Y(1), Y(2), Y(4) and Y(5) receptors. Retina endothelial cells express all NPY receptors except NPY Y(5) receptor. Moreover, NPY is released from retinal cells in culture upon depolarization. In this study we showed for the first time that NPY is present in rat retina microglial cells and also in rat Müller cells. These in vitro models may open new perspectives to study the physiology and the potential pathophysiological role of NPY in the retina.  相似文献   

15.
Zheng M  Zhang Z  Zhao X  Ding Y  Han H 《遗传学报》2010,37(9):573-582
The retina is one of the most essential elements of vision pathway in vertebrate. The dysplasia of retina cause congenital blindness or vision disability in individuals, and the misbalance in adult retinal vascular homeostasis leads to neovaseularization-associated diseases in adults, such as diabetic retinopathy or age-related macular degeneration. Many developmental signaling pathways are involved in the process of retinal development and vascular homeostasis. Among them, Notch signaling pathway has long been studied, and Notch signaling-interfered mouse models show both neural retina dysplasia and vascular abnormality. In this review, we discuss the roles of Notch signaling in the maintenance of retinal progenitor cells, specification of retinal neurons and glial cells, and the sustaining of retina vascular homeostasis, especially from the aspects of conditional knockout mouse models. The potential of Notch signal mampulation may provide a powerful cell fate- and neovascularization-controlling tool that could have important applications in la'eatment of retinal diseases.  相似文献   

16.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood. (Chronobiology International, 17(5), 599–612, 2000)  相似文献   

17.
The proliferative expansion of retinal progenitor cells (RPCs) is a fundamental mechanism of growth during vertebrate retinal development. Over the past couple of years, significant progress has been made in identifying genes expressed in RPCs that are essential for their proliferation, and the molecular mechanisms are beginning to be resolved. In this review, we highlight recent studies that have identified regulatory components of the RPC cell cycle machinery and implicate a set of homeobox genes as key regulators of proliferative expansion in the retina.  相似文献   

18.
Embryonic stem cells and retinal repair   总被引:1,自引:0,他引:1  
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.  相似文献   

19.
In this review we highlight two genetic pathways important for eye morphogenesis that are partially conserved between flies and vertebrates. Initially we focus on the ey paradigm and establish which aspects of this genetic hierarchy are conserved in vertebrates. We discuss experiments that evaluate the non-linear relationship amongst the genes of the hierarchy with a concentration on vertebrate functional genetics. We specifically consider the Six genes and their relationship to sine oculis, as tremendous amounts of new data have emerged on this topic. Finally, we highlight similarities between Shh/Hh directed morphogenesis mediated by basic Helix-Loop-Helix factors in vertebrate retinal cell specification and in specification of fly photoreceptors.  相似文献   

20.
The marine bacterium Vibrio natriegens is the fastest-growing non-pathogenic bacterium known to date and is gaining more and more attention as an alternative chassis organism to Escherichia coli. A recent wave of synthetic biology efforts has focused on the establishment of molecular biology tools in this fascinating organism, now enabling exciting applications – from speeding up our everyday laboratory routines to increasing the pace of biotechnological production cycles. In this review, we seek to give a broad overview on the literature on V. natriegens, spanning all the way from its initial isolation to its latest applications. We discuss its natural ecological niche and interactions with other organisms, unveil some of its extraordinary traits, review its genomic organization and give insight into its diverse metabolism – key physiological insights required to further develop this organism into a synthetic biology chassis. By providing a comprehensive overview on the established genetic tools, methods and applications we highlight the current possibilities of this organism, but also identify some of the gaps that could drive future lines of research, hopefully stimulating the growth of the V. natriegens research community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号