首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence requirements in the catalytic core of the "10-23" DNA enzyme   总被引:7,自引:0,他引:7  
A systematic mutagenesis study of the "10-23" DNA enzyme was performed to analyze the sequence requirements of its catalytic domain. Therefore, each of the 15 core nucleotides was substituted separately by the remaining three naturally occurring nucleotides. Changes at the borders of the catalytic domain led to a dramatic loss of enzymatic activity, whereas several nucleotides in between could be exchanged without severe effects. Thymidine at position 8 had the lowest degree of conservation and its substitution by any of the other three nucleotides caused only a minor loss of activity. In addition to the standard nucleotides (adenosine, guanosine, thymidine, or cytidine) modified nucleotides were used to gain further information about the role of individual functional groups. Again, thymidine at position 8 as well as some other nucleotides could be substituted by inosine without severe effects on the catalytic activity. For two positions, additional experiments with 2-aminopurine and deoxypurine, respectively, were performed to obtain information about the specific role of functional groups. In addition to sequence-function relationships of the DNA enzyme, this study provides information about suitable sites to introduce modified nucleotides for further functional studies or for internal stabilization of the DNA enzyme against endonucleolytic attack.  相似文献   

2.
We describe light-induced switches for the catalytic activity of the small, RNA-cleaving 8-17 deoxyribozyme (DNAzyme), based on photochemically induced cis-trans isomerization of azobenzene (Az) moieties covalently tethered at various locations within the DNAzyme. Prior studies have shown that trans-azobenzene is able to stack comfortably within a DNA double helix, stabilizing it, while cis-azobenzene has a helix-destabilizing effect. We designed two classes of Az-modified 8-17DNAzyme constructs, in each of which two azobenzene molecules substituted for nucleotides, either in the substrate-binding arm (SBA); or, within the catalytic core. Measurement of single-turnover kinetics for RNA cleavage revealed that in the SBA constructs Ell and E13, five- to sixfold higher catalytic rates were obtained when the reaction mixture was irradiated with visible light (favouring trans-Az) as compared to ultraviolet light (which promotes cis-Az), consistent with trans-Az in these constructs stabilizing the enzyme-substrate complex. Surprisingly, the reverse result was obtained with the catalytic core construct E17, where ultraviolet irradiation resulted in a five- to sixfold faster catalytic activity relative to visible light irradiation. The development of such light-responsive nucleic acid enzymes may open new possibilities of using light as the activating or repressing agent in the control of gene expression within living cells and organisms.  相似文献   

3.
4.
T-Hg-T base pair formation has been demonstrated to be compatible with duplex DNA context, with considerable thermal stability contribution. Here, the T-Hg-T stem in two small DNAzymes 8–17 and 10–23 was studied for its structural and functional roles. The recognition arm 5′ to the cleavage site of 10–23 DNAzyme complex and the stem in the catalytic loop of 8–17 DNAzyme could be replaced by consecutive T-Hg-T stem of different length. The linear relationship between the activity of the complex 10–23DZ-6T+D19–6T and the concentration of Hg2+ demonstrated that the T-Hg-T stem contributes thermal stability of the recognition arm binding. The effect of T-Hg-T stem in the catalytic core of 8–17 DNAzyme and the position-dependent effect in 10–23 DNAzyme demonstrated that T-Hg-T base pair is not compatible with canonical base pairs in playing the functions of nucleic acids.  相似文献   

5.
Two modified 2′-deoxynucleoside 5′-triphosphates have been used for the in vitro selection of a modified deoxyribozyme (DNAzyme) capable of the sequence-specific cleavage of a 12 nt RNA target in the absence of divalent metal ions. The modified nucleotides, a C5-imidazolyl-modified dUTP and 3-(aminopropynyl)-7-deaza-dATP were used in place of TTP and dATP during the selection and incorporate two extra protein-like functionalities, namely, imidazolyl (histidine analogue) and primary amino (lysine analogue) into the DNAzyme. The functional groups are analogous to the catalytic Lys and His residues employed during the metal-independent cleavage of RNA by the protein enzyme RNaseA. The DNAzyme requires no divalent metal ions or other cofactors for catalysis, remains active at physiological pH and ionic strength and can recognize and cleave a 12 nt RNA substrate with sequence specificity. This is the first example of a functionalized, metal-independent DNAzyme that recognizes and cleaves an all-RNA target in a sequence-specific manner. The selected DNAzyme is two orders of magnitude more efficient in its cleavage of RNA than an unmodified DNAzyme in the absence of metal ions and represents a rate enhancement of 105 compared with the uncatalysed hydrolysis of RNA.  相似文献   

6.
Deoxyribozymes (DNAzymes) are single-stranded DNA that catalyze nucleic acid biochemistry. Although a number of DNAzymes have been discovered by in vitro selection, the relationship between their tertiary structure and function remains unknown. We focus here on the well-studied 10-23 DNAzyme, which cleaves mRNA with a catalytic efficiency approaching that of RNase A. Using coarse-grained Brownian dynamics simulations, we find that the DNAzyme bends its substrate away from the cleavage point, exposing the reactive site and buckling the DNAzyme catalytic core. This hypothesized transition state provides microscopic insights into experimental observations concerning the size of the DNAzyme/substrate complex, the impact of the recognition arm length, and the sensitivity of the enzymatic activity to point mutations of the catalytic core. Upon cleaving the pertinent backbone bond in the substrate, we find that the catalytic core of the DNAzyme unwinds and the overall complex rapidly extends, in agreement with experiments on the related 8-17 DNAzyme. The results presented here provide a starting point for interpreting experimental data on DNAzyme kinetics, as well as developing more detailed simulation models. The results also demonstrate the limitations of using a simple physical model to understand the role of point mutations.  相似文献   

7.
DNAzyme-mediated silencing of ornithine decarboxylase   总被引:2,自引:0,他引:2  
The value of reducing the activity of ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is well-appreciated. Polyamines are necessary components for cell growth, and manipulation of polyamine homeostasis may be an effective strategy for the treatment of a number of disorders, including neoplastic diseases. An approach to develop an effective DNAzyme, using the 10-23 model, against ODC is described in these studies. DNAzymes able to cleave the target ODC RNA were identified in vitro and further characterized by the effect each had on ODC protein and activity levels using in vitro translated ODC RNA. ODC protein levels and activity correlated well with the RNA cleavage activity of the DNAzyme. One of the DNAzymes, DZ IV, which exhibited good activity, was optimized for use in cell culture studies. The DNAzyme hybridization arms were altered from equal length arms varying in length (8, 9, 10, or 11 nucleotides) or to unequal length arms (7/11 nucleotides), and kinetic analyses were performed to identify the most catalytically efficient configuration. DZ IV with equal arms nine nucleotides in length proved to be the most catalytically efficient. In HEK 293 cells, DZ IV was able to reduce the amount of translated ODC protein, resulting in approximately 80% reduction in ODC activity-a statistically significant enhancement over the apparent antisense effect of a catalytically inactive DNAzyme. These results indicate that this DNAzyme may be a useful tool to study the function of ODC and may have potential therapeutic uses.  相似文献   

8.
A A Beaudry  G F Joyce 《Biochemistry》1990,29(27):6534-6539
We have completed a comprehensive deletion analysis of the Tetrahymena ribozyme in order to define the minimum secondary structure requirements for phosphoester transfer activity of a self-splicing group I intron. A total of 299 nucleotides were removed in a piecewise fashion, leaving a catalytic core of 114 nucleotides that form 7 base-paired structural elements. Among the various deletion mutants are a 300-nucleotide single-deletion mutant and a 281-nucleotide double-deletion mutant whose activity exceeds that of the wild type when tested under physiologic conditions. Consideration of those structural elements that are essential for catalytic activity leads to a simplified secondary structure model of the catalytic core of a group I intron.  相似文献   

9.
Previous studies indicate that the O-helix of Thermus aquaticus (Taq) DNA polymerase I (pol I) plays an important role in the replication fidelity of the enzyme. This study examines the role of Thr-664, which lies in the middle of the O-helix of Taq pol I. A mutant of Taq Pol I with a proline substitution of Thr-664 (T664P) exhibits much lower replication fidelity than the wild type enzyme in a forward mutation assay. T664P produces base substitution, single-base deletion, and single-base insertion errors at 20-, 5, and 50-fold higher rates than wild type, respectively. In specific activity and steady-state kinetic experiments, T664P was catalytically robust for insertion of correct nucleotides. In contrast, it incorporated incorrect nucleotides 6.1- to 10-fold more efficiently than wild type at a template dC. Mismatched primer termini were extended by T664P 4.2- to 9.5-fold more efficiently than wild type. These data imply that the O-helix with a proline at position 664 functions like wild type Taq pol I for correct nucleotide incorporations, but bends and enlarges the catalytic pocket of the enzyme and increases the rate of nucleotide misincorporation.  相似文献   

10.
We have performed a deletion and mutational analysis of the catalytic ribonuclease (RNase) P RNA subunit from the extreme thermophilic eubacterium Thermus thermophilus HB8. Catalytic activity was reduced 600-fold when the terminal helix, connecting the 5' and 3' ends of the molecule, was destroyed by deleting 15 nucleotides from the 3' end. In comparison, the removal of a large portion (94 nucleotides, about one quarter of the RNA) of the upper loop region impaired function only to a relatively moderate extent (400-fold reduction in activity). The terminal helix appears to be crucial for the proper folding of RNase P RNA, possibly by orientating the adjacent universally conserved pseudoknot structure. The region containing the lower half of the pseudoknot structure was shown to be a key element for enzyme function, as was the region of nucleotides 328-335. Deleting a conserved hairpin (nucleotides 304-327) adjacent to this region and replacing the hairpin by a tetranucleotide sequence or a single cytidine reduced catalytic activity only 6-fold, whereas a simultaneous mutation of the five highly conserved nucleotides in the region of nucleotides 328-335 reduced catalytic activity by > 10(5)-fold. The two strictly conserved adenines 244 and 245 (nucleotides 248/249 in Escherichia coli RNase P RNA) were not as essential for enzyme function as suggested by previous data. However, additional disruption of two helical segments (nucleotides 235-242) adjacent to nucleotides 244 and 245 reduced activity by > 10(4)-fold, supporting the notion that nucleotides in this region are also part of the active core structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
8-17 DNAzyme is characterized by its recurrence in different in vitro selections and versatile cleavage sites, leading to extensive studies on its structural properties and applications. We evaluated the purine residues (A6, G7, G11, A12, G14, and A15) in the catalytic core of 8-17 DNAzyme of their five-membered ring moiety with purine analogs 1-5 to have an insight into the conservation of the residues at the level of functional groups. The 7-nitrogen atom in the AGC loop was demonstrated to be strictly conserved for the cleavage reaction. But such modifications exerted favorable effect at G11 of the base-pair stem and A12 in the single-strand loop, directing toward more efficient DNAzymes. Even the most conserved G14 could tolerate such modifications. These results demonstrated that chemical modification on the functional groups is a feasible approach to gain an insight into the structural requirement in the catalytic reaction of DNAzymes. It also provided modification sites for introduction of signaling molecules used for mechanistic and folding studies of 8-17 DNAzyme.  相似文献   

12.
The intracellular ability of the "10-23" DNAzyme to efficiently inhibit expression of targeted proteins has been evidenced by in vitro and in vivo studies. However, standard conditions for kinetic measurements of the DNAzyme catalytic activity in vitro include 25 mM Mg2+, a concentration that is very unlikely to be achieved intracellularly. To study this discrepancy, we analyzed the folding transitions of the 10-23 DNAzyme induced by Mg2+. For this purpose, spectroscopic analyzes such as fluorescence resonance energy transfer, fluorescence anisotropy, circular dichroism, and surface plasmon resonance measurements were performed. The global geometry of the DNAzyme in the absence of added Mg2+ seems to be essentially extended, has no catalytic activity, and shows a very low binding affinity to its RNA substrate. The folding of the DNAzyme induced by binding of Mg2+ may occur in several distinct stages. The first stage, observed at 0.5 mM Mg2+, corresponds to the formation of a compact structure with limited binding properties and without catalytic activity. Then, at 5 mM Mg2+, flanking arms are projected at right position and angles to bind RNA. In such a state, DNAzyme shows substantial binding to its substrate and significant catalytic activity. Finally, the transition occurring at 15 mM Mg2+ leads to the formation of the catalytic domain, and DNAzyme shows high binding affinity toward substrate and efficient catalytic activity. Under conditions simulating intracellular conditions, the DNAzyme was only partially folded, did not bind to its substrate, and showed only residual catalytic activity, suggesting that it may be inactive in the transfected cells and behave like antisense oligodeoxynucleotide.  相似文献   

13.
DNAzymes are known to bind metal ions specifically to carry out catalytic functions. Despite many studies since DNAzymes were discovered nearly two decades ago, the metal-binding sites in DNAzymes are not fully understood. Herein, we adopt uranyl photocleavage to probe specific uranyl-binding sites in the 39E DNAzyme with catalytically relevant concentrations of uranyl. The results indicate that uranyl binds between T23 and C25 in the bulge loop, G11 and T12 in the stem loop of the enzyme strand, as well as between T2.4 and G3 close to the cleavage site in the substrate strand. Control experiments using two 39E DNAzyme mutants revealed a different cleavage pattern of the mutated region. Another DNAzyme, the 8–17 DNAzyme, which has a similar secondary structure but shows no activity in the presence of uranyl, indicated a different uranyl-dependent photocleavage as well. In addition, a close correlation between the concentration-dependent photocleavage and enzymatic activities is also demonstrated. Together, these experiments suggest that uranyl photocleavage has been successfully used to probe catalytically relevant uranyl-binding sites in the 39E DNAzyme. As uranyl is the cofactor of the 39E DNAzyme as well as the probe, specific uranyl binding has now been identified without disruption of the structure.  相似文献   

14.
RNA cleaving '10-23' DNAzymes with enhanced stability and activity   总被引:1,自引:0,他引:1  
‘10-23’ DNAzymes can be used to cleave any target RNA in a sequence-specific manner. For applications in vivo, they have to be stabilised against nucleolytic attack by the introduction of modified nucleotides without obstructing cleavage activity. In this study, we optimise the design of a DNAzyme targeting the 5′-non-translated region of the human rhinovirus 14, a common cold virus, with regard to its kinetic properties and its stability against nucleases. We compare a large number of DNAzymes against the same target site that are stabilised by the use of a 3′-3′-inverted thymidine, phosphorothioate linkages, 2′-O-methyl RNA and locked nucleic acids, respectively. Both cleavage activity and nuclease stability were significantly enhanced by optimisation of arm length and content of modified nucleotides. Furthermore, we introduced modified nucleotides into the catalytic core to enhance stability against endonucleolytic degradation without abolishing catalytic activity. Our findings enabled us to establish a design for DNAzymes containing nucleotide modifications both in the binding arms and in the catalytic core, yielding a species with up to 10-fold enhanced activity and significantly elevated stability against nucleolytic cleavage. When transferring the design to a DNAzyme against a different target, only a slight modification was necessary to retain activity.  相似文献   

15.
16.
Yeast autonomously replicating sequence (ARS) elements contain an 11-base-pair core consensus sequence (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') that is required for function. The contribution of each position within this sequence to ARS activity was tested by creating all possible single-base mutations within the core consensus sequence of ARS307 (formerly called the C2G1 ARS) and testing their effects on high-frequency transformation and on plasmid stability. Of the 33 mutations, 22 abolished ARS function as measured by high-frequency transformation, 7 caused more than twofold reductions in plasmid stability, and 4 had no effect on plasmid stability. Mutations that reduced or abolished ARS activity occurred at each position in the consensus sequence, demonstrating that each position of this sequence contributes to ARS function. Of the four mutations that had no effect on ARS activity, three created alternative perfect matches to the core consensus sequence, demonstrating that the alternate bases allowed by the consensus sequence are, indeed, interchangeable. In addition, a change from T to C at position 6 did not perturb wild-type efficiency. To test whether the essential region extends beyond the 11-base-pair consensus sequence, the effects on plasmid stability of point mutations one base 3' to the T-rich strand of the core consensus sequence (position 12) and deletion mutations that altered bases 5' to the T-rich strand of the core consensus sequence were examined. An A at position 12 or the removal of three T residues 5' to the core consensus sequence severely diminished ARS efficiency, showing that the region required for full ARS efficiency extends beyond the core consensus sequence in both directions.  相似文献   

17.
The catalytic core of a 10-23 DNAzyme was modified introducing conformationally restricted nucleosides such as (2'R)-, (2'S)-2'-deoxy-2'-C-methyluridine, (2'R)-, (2'S)-2'-deoxy-2'-C-methylcytidine, 2,2'-anhydrouridine and LNA-C, in one, two or three positions. Catalytic activities under pseudo first order conditions were compared at different Mg(2+) concentrations using a short RNA substrate. At low Mg(2+) concentrations, triple modified DNAzymes with similar kinetic performance to that displayed by the non-modified control were identified. In the search for a partial explanation of the obtained results, in silico studies were carried out in order to explore the conformational behavior of 2'-deoxy-2'-C-methylpyrimidines in the context of a loop structure, suggesting that at least partial flexibility is needed for the maintenance of activity. Finally, the modified 2'-C-methyl DNAzyme activity was tested assessing the inhibition of Stat3 expression and the decrease in cell proliferation using the human breast cancer cell line T47D.  相似文献   

18.
The RNA phosphodiester bond cleavage activity of a series of 16 thio-deoxyribozymes 10-23, containing a P-stereorandom single phosphorothioate linkage in predetermined positions of the catalytic core from P1 to P16, was evaluated under single-turnover conditions in the presence of either 3 mM Mg(2+) or 3 mM Mn(2+). A metal-specificity switch approach permitted the identification of nonbridging phosphate oxygens (proR(P) or proS(P)) located at seven positions of the core (P2, P4 and P9-13) involved in direct coordination with a divalent metal ion(s). By contrast, phosphorothioates at positions P3, P6, P7 and P14-16 displayed no functional relevance in the deoxyribozyme-mediated catalysis. Interestingly, phosphorothioate modifications at positions P1 or P8 enhanced the catalytic efficiency of the enzyme. Among the tested deoxyribozymes, thio-substitution at position P5 had the largest deleterious effect on the catalytic rate in the presence of Mg(2+), and this was reversed in the presence of Mn(2+). Further experiments with thio-deoxyribozymes of stereodefined P-chirality suggested direct involvement of both oxygens of the P5 phosphate and the proR(P) oxygen at P9 in the metal ion coordination. In addition, it was found that the oxygen atom at C6 of G(6) contributes to metal ion binding and that this interaction is essential for 10-23 deoxyribozyme catalytic activity.  相似文献   

19.
Chitinase A (ChiA) from Serratia marcescens is a mesophilic enzyme with high catalytic activity and high stability. The crystal structure of ChiA has revealed a TIM-barrel fold of the catalytic domain, an (alpha+beta) insertion between the B7 beta-strand and A7 alpha-helix of the TIM-barrel, an FnIII domain at the N-terminus of the molecule and a hinge region that connects the latter to the catalytic domain. In this study, the role of the (alpha+beta) domain on the stability, catalytic activity and specificity of the enzyme was investigated by deleting this domain and studying the enzymatic and structural properties of the resulting truncated enzyme. The obtained data clearly show that by removing the (alpha+beta) domain, the thermal stability of the enzyme is substantially reduced, with an apparent T(m) of 42.0+/-1.0 degrees C, compared to the apparent T(m) of 58.1+/-1.0 degrees C of ChiA at pH 9.0. The specific activity of ChiADelta(alpha+beta) was substantially decreased, the pH optimum was shifted from 6.5 to 5.0 and the substrate and product specificities were altered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号