首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of membranotropic substances--nonionic detergent Tween-20 and EDTA--on the activity and some properties of Na,K-ATPase from mammalian erythrocytes were studied. It was shown that pretreatment of whole erythrocytes with Tween-20 (5 mg/ml) allows a detection of the enzyme activity, which cannot be detected in intact cells. It was also found that erythrocyte ghosts with a high and stable activity of Na,K-ATPase can be obtained by injections of EDTA (1-2 mM) into the hemolysis medium. Although the enzyme activity in whole erythrocytes and their ghosts was detected by the use of various membranotropic agents, the type of the dependence of the Na,K-ATPase activity on MgCl2 and EDTA concentration in the incubation medium was essentially the same for both cell preparations, the optimal concentrations of MgCl2 and EDTA being 3 and 1 mM, respectively. A rise in MgCl2 concentration above 3 mM caused a decrease of the enzymatic activity. Simple techniques have been developed for the detection of the Na,K-ATPase activity in mammalian erythrocytes which allow the determination of a higher enzymatic activity than those described in literature.  相似文献   

2.
3.
ATPase activity of freshly prepared brain microsomes was stimulated 20% when 0.1 mm CaCl2 was added in the presence of a “saturating” concentration of MgCl2 (4 mm). This (Ca + Mg)-stimulated activity declined rapidly on storage. Treatment of the microsomes with 0.12% deoxycholate in 0.15 m KCl, followed by centrifugation and resuspension in sucrose, produced a preparation both stable on storage at ?15 °C and with an increased stimulation in the presence of CaCl2. SrCl2 was more effective than CaCl2, but BaCl2 was a poor activator. KCl and NaCl stimulated the (Ca + Mg)-ATPase activity by reducing substrate (ATP) inhibition. The Km for ATP was 0.1 mm, a third that of the Mg-ATPase. CTP, ITP, and GTP could not substitute for ATP, although they were fair substrates for the Mg-ATPase. The energy of activation of the (Ca + Mg)-ATPase was 21 kcal, nearly twice that of the Mg-ATPase. After sucrose density-gradient centrifugation of the microsomal preparation, the (Ca + Mg)-ATPase activity was distributed with the (Na + K)-ATPase and not with the mitochondrial marker succinic dehydrogenase. Studies with ouabain, oligomycin, and azide distinguished the (Ca + Mg)-stimulated ATPase from (Na + K)- and mitochondrial ATPases. Sensitivity to ruthenium red suggested a link to Ca transport, although the microsomal 45Ca accumulating system was much more sensitive to the inhibitor than was this ATPase activity.  相似文献   

4.
A guinea pig kidney membrane preparation was incubated with thimerosal and then thoroughly washed. Comparison of the properties of the native and the modified membranes showed that (a) Na++K+-dependent activity is substantially inhibited by thimerosal; (b) thimerosal does not diminish Na+-dependent ATPase activity; and (c) the thimerosal treated enzyme, like the native enzyme, is phosphorylated in the presence of Na+ and ATP, and dephosphorylated upon the addition of K+. It is suggested that thimerosal does not affect the binding of ATP to the high-affinity catalytic site, but that it blocks the binding of ATP to a low affinity modifying site the occupation of which is essential for the dissociation of the stable K+-dephosphoenzyme and the recycling of the enzyme.  相似文献   

5.
The properties of a (Na+ plus K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) activator contained in leukocytic extracts was investigated. Intact polymorphonuclear leukocytes release the activator in a time- and temperature-dependent process. It is non-dialyzable through cellophane; inactivated by protease, trypsin, or phenol; contains essential sulfhydryl groups; and is heat and acid labile. Treatment of ATPase with the activator and subsequent removable of the activator from mixtures did not reverse the ATPase activation.  相似文献   

6.
1. The K+-nitrophenylphosphatase activity associated with mammalian brain (Na+ + K+)-ATPase displays K+ activation curves that have intermediary plateaus and maxima in the presence of less than saturating concentrations of Na+. Zero Na+ and saturating Na+ produce sigmoid K+-activation curves with low and high K+ affinities respectively. 2. ATP inhibits K+-activated nitrophenylphosphatase through both competitive and non-competitive mechanisms. ATP is synergistic with Na+ in the mechanism which converts the enzyme from low to high K+ affinity. 3. The Na+ and K+ interactions can be accounted for by equations which describe a model with separate regulatory sites for Na+ and K+ and with K+- requiring catalytic site which is only accessible in one of the two principal conformational stages of the enzyme. 4. The effects of ATP can be accounted for by the same model through interactions at a single nucleotide binding site. Inhibition which is competitive with K+ and non-competitive with substrate arises from stabilization of the inactive enzyme conformation. Inhibition which is non-competitive with K+ and competitive with substrate results from interactions with the active enzyme conformation. The synergism between Na+ and ATP appears to arise as a consequence of the formation of phosphoryl enzyme. 5. A model for (Na+ + K+)-ATPase is discussed which involves in-phase coupling of subunit interactions as suggested by these studies.  相似文献   

7.
A persistent ATPase/GTPase activity has been found to be associated with highly recycled bovine brain microtubules. A GTP regeneration system was introduced to minimize the inhibitory effects of this hydrolase on microtubule polymerization. The characteristics of the ATPase indicate that it is not involved in GTP-induced mictrotubule polymerization, but is directly involved in ATP-induced polymerization. ATP-induced polymerization was also shown to require stoichiometric amounts of GDP, but higher levels of GDP inhibited both microtubule formation and the ATPase activity. An ammonium sulfate fractionation procedure was devised to separate microtubule protein into an ATPase-rich fraction and a pure tubulin fraction. The pure tubulin fraction polymerized in the presence of GTP, but not in the presence of ATP and GDP. In contrast, the ATPase-rich fraction polymerized with either ATP or GTP. It is still not known whether the microtubule associated ATPase plays a significant role in cellular microtubule function.  相似文献   

8.
Na+-K+-activated ATPase in rat brain development   总被引:8,自引:5,他引:3  
  相似文献   

9.
Studies on Na+-K+-stimulated ATPase of human brain   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source.  相似文献   

12.
The reported effects of norepinephrine (NE) on brain Na+-K+ ATPase are quite variable. Different investigators have reported activation, inhibition, or no effect. An investigation of the importance of reaction conditions on brain Na+-K+ ATPase activity was undertaken to resolve some of these discrepancies. Using porcine cerebral cortical Na+-K+ ATPase and rat brain synaptosomal membrane preparations, it was observed that NE strongly inhibited brain Na+-K+ ATPase in Tris-HCl buffer. This inhibition of the enzyme was reversed by the addition of EDTA. In contrast, NE did not significantly inhibit Na+-K+ ATPase in imidazole-glycylglycine and Krebs-Ringer-phosphate buffers. This buffer dependence of NE inhibition of the enzyme was consistently demonstrated with three different established methods for phosphate measurement. Kinetic analysis indicated that NE, in Tris-HCl buffer, inhibited the enzyme noncompetitively at high affinity, and competitively at low affinity, ATP substrate sites.  相似文献   

13.
(1) Contrary to what has usually been assumed, (Na+ + K+)-ATPase slowly hydrolyses AdoPP[NH]P in the presence of Na+ + Mg2+ to ADP-NH2 and Pi. The activity is ouabain-sensitive and is not detected in the absence of either Mg2+ or Na2+. The specific activity of the Na+ + Mg2+ dependent AdoPP[NH]P hydrolysis at 37°C and pH 7.0 is 4% of that for ATP under identical conditions and only 0.07% of that for ATP in the presence of K+. The activity is not stimulated by K+, nor can K+ replace Na+ in its stimulatory action. This suggests that phosphorylation is rate-limiting. Stimulation by Na+ is positively cooperative with a Hill coefficient of 2.4; half-maximal stimulation occurs at 5–9 mM. The Km value for AdoPP[NH]P is 17 μM. At 0°C and 21°C the specific activity is 2 and 14%, respectively, of that at 37°C. AMP, ADP and AdoPP[CH2]P are not detectably hydrolysed by (Na+ + K+)-ATPase in the presence of Na+ + Mg2+. (2) In addition, AdoPP[NH]P undergoes spontaneous, non-enzymatic hydrolysis at pH 7.0 with rate constants at 0, 21 and 37°C of 0.0006, 0.006 and 0.07 h?1, respectively. This effect is small compared to the effect of enzymatic hydrolysis under comparable conditions. Mg2+ present in excess of AdoPP[NH]P reduces the rate constant of the spontaneous hydrolysis to 0.005 h?1 at 37°C, indicating that the MgAdoPP[NH]P complex is virtually stable to spontaneous hydrolysis, as is also the case for its enzymatic hydrolysis. (3) A practical consequence of these findings is that AdoPP[NH]P binding studies in the presence of Na+ + Mg2+ with enzyme concentrations in the mg/ml range are not possible at temperatures above 0°C. On the other hand, determination of affinity in the (Na+ + K+)-ATPase reaction by competition with ATP at low protein concentrations (μg/ml range) remains possible without significant hydrolysis of AdoPP[NH]P even at 37°C.  相似文献   

14.
V A Knight 《Life sciences》1974,15(1):95-102
Alternative reactions of ouabain with Na+ + K+ ATPase are described which may be interpreted by assuming that a conformational change takes place. Each conformational form appears to be dependent upon the cationic environment. The reaction of ouabain with one form inhibits the dephosphorylation step and inhibits the binding of ATP when it reacts with another conformational form.  相似文献   

15.
The effects of administration of cortisol, corticosterone, testosterone, progesterone and a synthetic estrogen. diethylstilbestrol (DES) on total brain Na(+)-K+- ATPase were investigated in tilapia, O. mossambicus. Exogenous administration of 0.125 and 0.25 microg/g body weight of glucocorticoids and 0.125, 0.25 and 0.5 microg/g body weight of DES for 5 days significantly stimulated Na+(-) K+ ATPase activity by 14-41% in the brain, while 0.5 microg/g body weight of glucocorticoids did not evoke any response on the activity of the enzyme. Progesterone (0.125 and 0.25 microg/g body weight) administration significantly decreased the enzyme activity by 21-36% and high dose (0.5 microg/g body weight) was ineffective. Testosterone exhibited a biphasic effect on Na(+)-K+ ATPase activity--a low dose stimulated by 14% while middle and high doses inhibited it by 19-24%. The results seem to be the first report on the effect of steroids on brain ATPase activity in a teleost. When 0.25microg/g body weight of actinomycin D or puromycin was administered prior to the treatment of similar doses of hormones, the inhibitors significantly inhibited the effect of the hormones by 24-52%. This clearly shows that the effect of the hormones was sensitive to the action of inhibitors suggesting a possible genomic mode of action under long-term treatment. The results suggest that cortisol, corticosterone and DES may possibly stimulate the co-transport of glucose and excitation of membrane potential while progesterone and testosterone inhibit them in the brain of O. mossambicus by regulating the activity of Na(+)-K+ ATPase.  相似文献   

16.
The Na+, K+-ATPase activity in the homogenate and in subcellular fractions of different parts of the brain of adult and old rats was studied in comparison. The content of cholesterol in the above fractions was also determined. In old age the Na+, K+-ATPase activity in the homogenate and microsomal fraction of the cerebral hemispheres' cortex decreases, while the Mg2+-ATPase activity in the cortex microsomal fraction increases. The age-related Na+, K+- and Mg2+-ATPase activity in the myelin of the stem in the synaptic plasma membranes of hemispheres and the brain stem remains unchanged whereas in the myelin fraction of hemispheres it grows. The content of cholesterol in the brain of old rats as compared with adult ones increases in the microsomal fraction and remains unchanged in synaptic membranes. The possible role of age-related modification of lipid component of plasma membranes in the above changes of Na+, K+-ATPase activity is discussed.  相似文献   

17.
18.
19.
1. The (Na+ + K+) ATPase activity of a rat brain synaptic membrane preparation was inhibited by 10(-5) M thimerosal. 2. The ouabain inhibitable K+-PNPPase activity of thimerosal treated membranes was compared with that of untreated membranes with respect to sensitivity to temperature, ouabain, K+ and ATP. 3. All those kinetic characteristics were substantially altered by treatment with thimerosal.  相似文献   

20.
The increase in Na+/K+ transport activity in skeletal muscles exposed to insulin was analysed. Plasma-membrane fractions were prepared from frog (Rana catesbeiana) skeletal muscles, and examination of the Na,K-ATPase (Na+ + K+-dependent ATPase) activity showed that it was insensitive to ouabain. In contrast, plasma-membrane fractions prepared from ouabain-pretreated muscles, by the same procedures, showed extremely low Na,K-ATPase activity. On adding saponin to the membrane suspension, the Na,K-ATPase activity increased, according to the detergent concentration. The maximum activity was about twice the control value, at 0.33 mg of saponin/mg of protein. Thus saponin makes vesicle membranes leaky, allowing ouabain in assay solutions to reach receptors on the inner surface of vesicles. Addition of insulin to saponin-treated membrane suspensions had no effect on the Na,K-ATPase activity, whereas the maximum activity of Na,K-ATPase in whole muscles was stimulated by exposure to insulin. The results show that the stimulation of Na+/K+ transport by insulin is not directly due to insulin binding to receptors on the cell surface, but rather support the view that the increase in the Na,K-ATPase induced by insulin requires an alteration of intracellular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号