首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been previously reported that iron release from ferritin could be promoted by nitric oxide (NO) generated from sodium nitroprusside. It was thus proposed that some of the toxic effects of NO could be related to its ability to increase intracellular free iron concentrations and generate an oxidative stress. On the contrary, the iron exchange experiments reported here show that NO from S-nitrosothiols is unable to promote iron release from ferritin. The discrepancy may be explained by the disregarded ability of ferrozine, the ferrous trap used in the previous report, to mobilize iron both from ferritin and from sodium nitroprusside spontaneously.  相似文献   

2.
Intracellular ferritin in newt (Triturus cristatus) erythroblasts was accessible to the chelating effects of EDTA and pyridoxal phosphate. EDTA (0.5-1 mM) promoted release of radioactive iron from ferritin of pulse-labelled erythroblasts during chase incubation, but its continuous presence was not necessary for ferritin iron mobilization. Brief exposure to EDTA was sufficient to release 60-70% of ferritin 59Fe content during ensuing chase in EDTA-free medium. EDTA also suppressed cellular iron uptake and utilization for heme synthesis, but these activities were restored upon its removal. Pyridoxal-5'-phosphate (0.5-5 mM) also stimulated loss of radioactive iron from ferritin; however, ferritin iron release by pyridoxal phosphate required its continued presence. Unlike EDTA, pyridoxal phosphate did not interfere with iron uptake or its utilization for heme synthesis. Chelator-mobilized ferritin iron accumulated initially in the hemolysate as a low-molecular-weight component and appeared to be eventually released into the medium. No radioactive ferritin was found in the medium of chelator-treated cells, indicating that secretion or loss of ferritin was not responsible for decreasing cellular ferritin 59Fe content. Moreover, there was no transfer of radioactive iron between the low-molecular-weight component released into the medium and plasma transferrin. These results indicate that chelator-released ferritin iron is not available for cellular utilization in heme synthesis and that ferritin iron released by this process is not an alternative or complementary iron source for heme synthesis. Correlation of these data with effects of succinylacetone inhibition of heme synthesis and with previous studies indicates that the main role of erythroid cell ferritin is absorption and storage of excess iron not used for heme synthesis.  相似文献   

3.
Abstract: Both iron and the major iron-binding protein ferritin are enriched in oligodendrocytes compared with astrocytes and neurons, but their functional role remains to be determined. Progressive hypoxia dramatically induces the synthesis of ferritin in both neonatal rat oligodendrocytes and a human oligodendroglioma cell line. We now report that the release of iron from either transferrin or ferritin-bound iron, after a decrease in intracellular pH, also leads to the induction of ferritin synthesis. The hypoxic induction of ferritin synthesis can be blocked either with iron chelators (deferoxamine or phenanthroline) or by preventing intracellular acidification (which is required for the release of transferrin-bound iron) with weak base treatment (ammonium chloride and amantadine). Two sources of exogenous iron (hemin and ferric ammonium citrate) were able to stimulate ferritin synthesis in both oligodendrocytes and HOG in the absence of hypoxia. This was not additive to the hypoxic stimulation, suggesting a common mechanism. We also show that ferritin induction may require intracellular free radical formation because hypoxia-mediated ferritin synthesis can be further enhanced by cotreatment with hydrogen peroxide. This in turn was blocked by the addition of exogenous catalase to the culture medium. Our data suggest that disruption of intracellular free iron homeostasis is an early event in hypoxic oligodendrocytes and that ferritin may serve as an iron sequestrator and antioxidant to protect cells from subsequent iron-catalyzed lipid peroxidation injury.  相似文献   

4.
5.
6.
The rate of iron release from thioglycollate-elicited mouse peritoneal macrophages pulsed with 59Fe-labelled transferrin-antitransferrin immune complexes was lower than that from resident or Corynebacterium parvum-activated macrophages. Anaerobic conditions increased the rate of iron release by thioglycollate-elicited macrophages but had no effect on resident or C. parvum-activated macrophages. Thioglycollate-elicited macrophages also contained less ferritin and were deficient in their ability to synthesis ferritin. Incubation of these cells in medium containing 100 microM iron caused some increase in ferritin synthesis, but the response to iron was much less pronounced than that by resident or C. parvum-activated macrophages. In the thioglycollate-elicited macrophages, relatively less iron was incorporated into ferritin, and more into other soluble macromolecules and insoluble haemosiderin-like compounds than in the other types of macrophages. It is proposed that thioglycollate-elicited macrophages tend to divert iron to a relatively inert intracellular pool, and that this could account for their reduced ability to release iron. Such a mechanism might help to explain the reduced release of iron by liver and spleen macrophages occurring during inflammation.  相似文献   

7.
The utilization of ferritin as a source of iron for the ferrochelatase reaction has been studied in isolated rat liver mitochondria. 1. It was found that isolated rat liver mitochondria utilized ferritin as a source of iron for the ferrochelatase reaction in the presence of succinate plus FMN (or FAD). 2. Under optimal experimental conditions, i.e., approx. 50 micromol/1 FMN, 37 degrees C, pH 7.4 and 0.5 mmol/l Fe(III) (as ferritin iron), the release process, as shown by the formation of deuteroheme, amounted to approx. 0.5 nmol iron/min per mg protein. 3. The release process could not be elicited by ultrasonically treated mitochondria, lysosomes, microsomes or cytosol, i.e., the release of iron from ferritin was due to mitochondria and was a function of the in situ orientation of the mitochondrial inner membrane. 4. The release of iron from ferritin by the mitochrondria might be of relevance not only for the in situ synthesis of heme in the hepatocyte, but also with respect to the mechanism(s) by means of which iron is mobilized for transport to the erythroid tissue.  相似文献   

8.
猪脾铁蛋白电子隧道特性及释放铁途径的研究   总被引:13,自引:0,他引:13  
维生素C和连二亚硫酸钠混合后只能加速猪脾铁蛋白释放铁的速率,并不能使铁蛋白释放铁的动力学途径由复杂转化为简单.而单独维生素C却能利用蛋白壳上的电子隧道传递电子,迫使铁蛋白以二分之一的反应级数方式释放整体铁核的铁并起着抗磷酸盐阻遏释放铁速率的作用,简化释放铁的途径.对维生素C参与铁蛋白释放铁的机理进行了讨论.  相似文献   

9.
10.
Superoxide-mediated release of iron from ferritin by some flavoenzymes   总被引:1,自引:0,他引:1  
NADH-lipoamide dehydrogenase mobilized iron from ferritin under aerobic conditions. Superoxide dismutase strongly inhibited this mobilization, indicating that the superoxide radical is generated by the enzymatic reaction and release iron from ferritin. Addition of lipoamide as an electron acceptor to NADH-lipoamide dehydrogenase increased the release of iron from ferritin and this release was partially inhibited by superoxide dismutase. Similarly, addition of menadione (2-methyl-1, 4-naphthoquinone) as an electron acceptor to xanthine-xanthine oxidase promoted the release of iron from ferritin and this release was strongly inhibited by superoxide dismutase. These results suggest that dihydrolipoamide and semiquinone of menadione can react with oxygen to form the superoxide radical that mediates release of iron from ferritin.  相似文献   

11.
Iron is essential for the survival as well as the proliferation and maturation of developing erythroid precursors (EP) into hemoglobin-containing red blood cells. The transferrin-transferrin receptor pathway is the main route for erythroid iron uptake. Using a two-phase culture system, we have previously shown that placental ferritin as well as macrophages derived from peripheral blood monocytes could partially replace transferrin and support EP growth in a transferrin-free medium. We now demonstrate that in the absence of transferrin, ferritin synthesized and secreted by macrophages can serve as an iron source for EP. Macrophages trigger an increase in both the cytosolic and the mitochondrial labile iron pools, in heme and in hemoglobin synthesis, along with a decrease in surface transferrin receptors. Inhibiting macrophage exocytosis, binding extracellular ferritin with specific antibodies, inhibiting EP receptor-mediated endocytosis or acidification of EP lysosomes, all resulted in a decreased EP growth when co-cultured with macrophages under transferrin-free conditions. The results suggest that iron taken up by macrophages is incorporated mainly into their ferritin, which is subsequently secreted by exocytosis. Nearby EP are able to take up this ferritin probably through clathrin-dependent, receptor-mediated endocytosis into endosomes, which following acidification and proteolysis release the iron from the ferritin, making it available for regulatory and synthetic purposes. Thus, macrophages support EP development under transferrin-free conditions by delivering essential iron in the form of metabolizable ferritin.  相似文献   

12.
We investigated the iron release from ferritin by irradiation from a white fluorescent light in the absence or presence of ADP. Irradiation of a ferritin solution at 17,000 lx in the absence of ADP slightly induces iron release from ferritin but only at acidic pH conditions (pH 5.0 or pH 6.0). Irradiation in the presence of ADP markedly enhances iron release from ferritin under the same conditions. In the absence of irradiation, the iron release from ferritin was low even in the presence of ADP. The induction of the iron release by irradiation in the presence of ADP was also affected by various factors such as irradiation dose and acidity, but not temperature (4-47°C), oxygen concentration, or free radical generations during the irradiation. The iron release during the irradiation ceased to increase by turning off the light and was found to increase again after additional irradiation. These results suggest that visible light directly induces iron release from ferritin via the photoreduction of iron stored inside ferritin.  相似文献   

13.
 The biological relevance of each of the three inorganic species – iron, oxygen, and nitric oxide (NO) – is crucial. Moreover, their metabolic pathways cross each other and thus create a complex network of connections responsible for the regulation of many essential biological processes. The iron storage protein ferritin, one of the main regulators of iron homeostasis, influences oxygen and NO metabolism. Here, examples are given of the biological interactions of the ferritin molecule (ferritin iron and ferritin shell) with reactive oxygen species (ROS) and NO. The focus is the regulation of ferritin expression by ROS and NO. From these data, ferritin emerges as an important cytoprotective component of the cellular response to ROS and NO. Also, by its ability to alter the amount of intracellular "free" iron, ferritin may affect the metabolism of ROS and NO. It is proposed that this putative activity of ferritin may constitute a missing link in the regulatory loop between iron, ROS, and NO. Received: 2 January 1997 / Accepted: 9 June 1997  相似文献   

14.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

15.
NADPH-cytochrome P-450 reductase-catalyzed reduction of paraquat promoted the release of iron from ferritin. Aerobically, iron release was inhibited approximately 60% by superoxide dismutase, whereas xanthine oxidase-dependent iron release was inhibited nearly 100%. This suggests that both superoxide and the paraquat cation radical can catalyze the release of iron from ferritin. Accordingly, under anaerobic conditions, the paraquat radical mediated a very rapid, complete release of iron from ferritin. Similarly, the cation free radicals of the closely related chemicals, diquat and benzyl viologen, also promoted iron release. ESR studies demonstrated that electron transfer from the paraquat cation radical to ferritin accounts for the reductive release of iron. The ferritin structure was not altered by exposure to the paraquat radical and also retained its ability to re-incorporate iron. These studies indicate that release of iron from ferritin may be a common feature contributing to free radical-mediated toxicities.  相似文献   

16.
Iron release from ferritin by alloxan radical   总被引:1,自引:0,他引:1  
T Miura  K Sakurai 《Life sciences》1988,43(25):2145-2149
Alloxan in the presence of reduced glutathione released iron from ferritin which is the major intracellular iron storage protein. Superoxide dismutase inhibited by only about 30% the alloxan-dependent iron release from ferritin but completely inhibited the iron release from ferritin induced by hypoxanthine-xanthine oxidase. Under anaerobic conditions, the ESR spectrum of alloxan radical was obtained and interaction with ferritin resulted in a marked diminution of the alloxan radical signal. These results indicate that alloxan radical rapidly releases iron from ferritin.  相似文献   

17.
The diabetogenic action of alloxan is believed to involve oxygen free radicals and iron. Incubation of glutathione (GSH) and alloxan with rat liver ferritin resulted in release of ferrous iron as assayed by spectrophotometric detection of ferrous-bathophenanthroline complex formation. Neither GSH nor alloxan alone mediated iron release from ferritin. Superoxide dismutase (SOD) and catalase did not affect initial rates of iron release whereas ceruloplasmin was an effective inhibitor of iron release. The reaction of GSH with alloxan resulted in the formation of the alloxan radical which was detected by ESR spectroscopy and by following the increase in absorbance at 310nm. In both instances, the addition of ferritin resulted in diminished alloxan radical detection. Incubation of GSH, alloxan, and ferritin with phospholipid liposomes also resulted in lipid peroxidation. Lipid peroxidation did not occur in the absence of ferritin. The rates of lipid peroxidation were not affected by the addition of SOD or catalase, but were inhibited by ceruloplasmin. These results suggest that the alloxan radical releases iron from ferritin and indicates that ferritin iron may be involved in alloxan-promoted lipid peroxidation.  相似文献   

18.
The in vitro effects of four different species of arsenic (arsenate, arsenite, monomethylarsonic acid, and dimethylarsinic acid) in mobilizing iron from horse spleen ferritin under aerobic and anaerobic conditions were investigated. Dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) significantly released iron from horse spleen ferritin either with or without the presence of ascorbic acid, a strong synergistic agent. Ascorbic acid-mediated iron release was time-dependent as well as both DMA(III) and ferritin concentration-dependent. Iron release from ferritin by DMA(III)) alone or with ascorbic acid was not significantly inhibited by superoxide dismutase (150 or 300 units/ml). However, the iron release was greater under anaerobic conditions (nitrogen gas), which indicates direct chemical reduction of iron from ferritin by DMA(III), with or without ascorbic acid. Both DMA(V) and DMA(III)) released iron from both horse spleen and human liver ferritin. Further, the release of ferritin iron by DMA(III)) with ascorbic acid catalyzed bleomycin-dependent degradation of calf thymus DNA. These results indicate that exogenous methylated arsenic species and endogenous ascorbic acid can cause (a) the release of iron from ferritin, (b) the iron-dependent formation of reactive oxygen species, and (c) DNA damage. This reactive oxygen species pathway could be a mechanism of action of arsenic carcinogenesis in man.  相似文献   

19.
Iron regulation of ferritin gene expression   总被引:9,自引:0,他引:9  
  相似文献   

20.
The involvement of "free" iron in damage caused by oxidative stress is well recognized. Superoxide generated in a short burst and at a relatively high flux by the xanthine/xanthine oxidase couple is known to release iron from ferritin in the presence of phenanthroline derivatives as iron chelators. However, superoxide generation via xanthine oxidase is accompanied by the simultaneous direct generation of hydrogen peroxide and, in the presence of ferritin, there is also a superoxide-independent release of iron. In this study it was found that the iron chelator employed attenuates superoxide formation from the xanthine/xanthine oxidase couple. The reaction of ferritin and transferrin with a clean chemical source of superoxide, di(4-carboxybenzyl)hyponitrite (SOTS-1) was therefore investigated. The efficiency of superoxide-induced iron release from ferritin increases dramatically as the superoxide flux is decreased, reaching as high as 0.5 Fe per O2*-. Treatment of ferritin for 16 h with SOTS-1 yielded as many as 130 Fe atoms/ferritin molecule, which greatly exceeds the amount of possible "contaminating" iron absorbed on the protein shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号