首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The industrial park of Herdersbrug (Brugge, Flanders, Belgium) comprises 92 small and medium‐sized enterprises, a waste‐to‐energy incinerator, and a power plant (not included in the study) on its site. To study the carbon dioxide (CO2) neutrality of the park, we made a park‐wide inventory for 2007 of the CO2 emissions due to energy consumption (electricity and fossil fuel) and waste incineration, as well as an inventory of the existing renewable electricity and heat generation. The definition of CO2 neutrality in Flanders only considers CO2 released as a consequence of consumption or generation of electricity, not the CO2 emitted when fossil fuel is consumed for heat generation. To further decrease or avoid CO2 emissions, we project and evaluate measures to increase renewable energy generation. The 21 kilotons (kt) of CO2 emitted due to electricity consumption are more than compensated by the 25 kt of CO2 avoided by generation of renewable electricity. Herdersbrug Industrial Park is thus CO2 neutral, according to the definition of the Flemish government. Only a small fraction (6.6%) of the CO2 emitted as a consequence of fossil fuel consumption (heat generation) and waste incineration is compensated by existing and projected measures for renewable heat generation. Of the total CO2 emission (149 kt) due to energy consumption (electricity + heat generation) and waste incineration on the Herdersbrug Industrial Park in 2007, 70.5% is compensated by existing and projected renewable energy generated in the park. Forty‐seven percent of the yearly avoided CO2 corresponds to renewable energy generated from waste incineration and biomass fermentation.  相似文献   

2.
H2 has a great potential as an ecologically-clean, renewable and capable fuel. It can be mainly produced via hydrogenases (Hyd) by different bacteria, especially Escherichia coli and Rhodobacter sphaeroides. The operation direction and activity of multiple Hyd enzymes in E. coli during mixed-acid fermentation might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating the activity of different Hyd enzymes is an effective way to enhance H2 production by E. coli in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production. Mixed carbon (sugar and glycerol) utilization studies enlarge the kind of organic wastes used in biotechnology. During photo-fermentation under limited nitrogen conditions, H2 production by Rh. sphaeroides is observed when carbon and nitrogen sources are supplemented. The relationship of H2 production with H+ transport across the membrane and membrane-associated ATPase activity is shown. On the other hand, combination of carbon sources (succinate, malate) with different nitrogen sources (yeast extract, glutamate, glycine) as well as different metal (Fe, Ni, Mg) ions might regulate H2 production. All these can enhance H2 production yield by Rh. sphaeroides in biotechnology Finally, two of these bacteria might be combined to develop and consequently to optimize two stages of H2 production biotechnology with high efficiency transformation of different organic sources.  相似文献   

3.
The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050. Together with rising economic growth, this is forecast to result in a 50% increase in fuel demand, which will have to be met while reducing carbon dioxide (CO2) emissions by 50–80% to maintain social, political, energy and climate security. This tension between rising fuel demand and the requirement for rapid global decarbonization highlights the need to fast‐track the coordinated development and deployment of efficient cost‐effective renewable technologies for the production of CO2 neutral energy. Currently, only 20% of global energy is provided as electricity, while 80% is provided as fuel. Hydrogen (H2) is the most advanced CO2‐free fuel and provides a ‘common’ energy currency as it can be produced via a range of renewable technologies, including photovoltaic (PV), wind, wave and biological systems such as microalgae, to power the next generation of H2 fuel cells. Microalgae production systems for carbon‐based fuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating the potential of microalgal technologies for the commercial production of solar‐driven H2 from water. It summarizes key global technology drivers, the potential and theoretical limits of microalgal H2 production systems, emerging strategies to engineer next‐generation systems and how these fit into an evolving H2 economy.  相似文献   

4.
5.
6.
Hydrogen (H2) is considered an alternative fuel of the future due to its high energy density and non-polluting nature. H2 energy provides many advantages over fossil fuels in that it is renewable, eco-friendly, and efficient. The global demand for H2 is increasing significantly; however, matching the supply of cost-competitive H2 to meet the current demand is a major technological barrier. H2 can be produced from lignocellulosic biomass and serve as a raw material for the synthesis of many industrially important chemicals. The use of thermophilic bacteria for biological production of H2 appears to be a promising alternative route to the current H2 production technologies. However, the carbon and H2 production metabolisms in most thermophilic bacteria have not yet been completely understood. This paper summarizes the recent research progress made toward understanding the carbon utilization for H2 production and developing gene manipulation techniques to enhance the H2 production capabilities in thermophilic bacteria. It reviews the current status, future directions and opportunities that thermophiles can offer to enable a cost-competitive and environmentally benign H2 production bioprocess.  相似文献   

7.
The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (~66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.  相似文献   

8.
Conversion of CO2 to organic compounds in hydrothermal systems is important in understanding prebiotic chemical evolution leading to the origin of life. However, organic compounds with carbon number of more than 3 have never been produced from dissolved CO2 in simulated hydrothermal experiments. In this paper, we report that not only CH4, C2H6 and C3H8, but also n-C4H10 and n-C5H12 could be produced from dissolved CO2 and H2 in the presence of cobalt-bearing magnetite at 300°C and 30 MPa. It is shown that unbranched alkanes in Anderson–Schulz–Flory distribution were the dominant hydrocarbon products produced from dissolved CO2 catalyzed by cobalt-bearing magnetite under certain hydrothermal conditions. It is proposed that magnetite with other transition metals may act potentially as effective mineral catalysts for abiotic formation of organic compounds from dissolved CO2 in hydrothermal systems.  相似文献   

9.
Microbial fuel cells (MFCs) can be used for electricity generation via bioconversion of wastewater and organic waste substrates. MFCs also hold potential for production of certain chemicals, such as H2 and H2O2. The studies of electricity generation in MFCs have mainly focused on the microbial community formation, substrate effect on the anode reaction, and the cathode’s catalytic properties. To improve the performance of MFCs, the initiation process requires more investigation because of its significant effect on the anodic biofilm formation. This review explores the factors which affect the initiation process, including inoculum, substrate, and reactor configuration. The key messages are that optimal performance of MFCs for electricity production requires (1) understanding of the electrogenic bacterial biofilm formation, (2) proper substrates at the initiation stage, (3) focus on operational conditions affecting initial biofilm formation, and (4) attention to the reactor configuration.  相似文献   

10.
It has increasingly become clear that economic growth worldwide based on fossil fuel energy supply cannot be sustained; thus, alternative, renewable energy sources and carriers must be urgently developed to maintain growth. Dihydrogen (H2), which can produce energy without generating environmental pollutants, can play a major role in this endeavor. However, to use H2 in renewable energy systems, systems and materials that can store and transport it, or convert it into easier‐to‐handle/transport synthetic fuels, need to be developed. In this article, first, many of the issues related to both homogeneous and heterogeneous catalysts that are being developed to help H2's use as energy carrier are discussed. More focus is then given to heterogeneous nanocatalysts that are developed for reversible CO2‐mediated hydrogenation and dehydrogenation reactions involving chemical hydrogen carriers and delivery systems, mainly formic acid/CO2 and formate/bicarbonate. The challenges associated with the development of nanocatalysts based on earth‐abundant elements for dehydrogenation and hydrogenation reactions of these compounds for H2 storage and release are emphasized in the discussions. Finally, the pressing research questions and major issues that need to be addressed in the near future to help the realization of the “hydrogen economy” are outlined.  相似文献   

11.
Hydrogen is a clean alternative to fossil fuels. It has applications for electricity generation and transportation and is used for the manufacturing of ammonia and steel. However, today, H2 is almost exclusively produced from coal and natural gas. As such, methods to produce H2 that do not use fossil fuels need to be developed and adopted. The biological manufacturing of H2 may be one promising solution as this process is clean and renewable. Hydrogen is produced biologically via enzymes called hydrogenases. There are three classes of hydrogenases namely [FeFe], [NiFe] and [Fe] hydrogenases. The [FeFe] hydrogenase HydA1 from the model unicellular algae Chlamydomonas reinhardtii has been studied extensively and belongs to the A1 subclass of [FeFe] hydrogenases that have the highest turnover frequencies amongst hydrogenases (21,000 ± 12,000 H2 s−1 for CaHydA from Clostridium acetobutyliticum). Yet to date, limitations in C. reinhardtii H2 production pathways have hampered commercial scale implementation, in part due to O2 sensitivity of hydrogenases and competing metabolic pathways, resulting in low H2 production efficiency. Here, we describe key processes in the biogenesis of HydA1 and H2 production pathways in C. reinhardtii. We also summarize recent advancements of algal H2 production using synthetic biology and describe valuable tools such as high-throughput screening (HTS) assays to accelerate the process of engineering algae for commercial biological H2 production.  相似文献   

12.
Precambrian Shield rocks host the oldest fracture fluids on Earth, with residence times up to a billion years or more. Water–rock reactions in these fracture systems over geological time have produced highly saline fluids, which can contain millimolar concentrations of H2. Mixing of these ancient Precambrian fluids with meteoric or palaeo-meteoric water can occur through tectonic fracturing, providing microbial inocula and redox couples to fuel blooms of subsurface growth. Here, we present geochemical and microbiological data from a series of borehole fluids of varying ionic strength (0.6–6.4 M) from the Thompson Mine (Manitoba) within the Canadian Precambrian Shield. Thermodynamic calculations demonstrate sufficient energy for H2-based catabolic reactions across the entire range of ionic strengths during mixing of high ionic strength fracture fluids with meteoric water, although microbial H2 consumption and cultivable H2-utilizing microbes were only detected in fluids of ≤1.9 M ionic strength. This pattern of microbial H2 utilization can be explained by the higher potential bioenergetic cost of organic osmolyte synthesis at increasing ionic strengths. We propose that further research into the bioenergetics of osmolyte regulation in halophiles is warranted to better constrain the habitability zones of hydrogenotrophic ecosystems in both terrestrial subsurface, including potential future radioactive waste disposal sites, and other planetary body crustal environments, including Mars.  相似文献   

13.
Melis A 《Planta》2007,226(5):1075-1086
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis–respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature’s most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.  相似文献   

14.
H2S in biogas was removed by sludge-loaded biofiltration, rendering the biogas suitable for catalytic reforming into a mixture of CO and H2 syngas that was then applied for the generation of electricity using a solid oxide fuel cell or for the chemical synthesis of methanol. The biogas was anaerobically produced in a 2 m3 bioreactor at 35°C for 2 years using restaurant food waste from Korea Advanced Institute of Science and Technology (KAIST), and the concentration of H2S in the biogas ranged from 612 to 1,500 ppmv (Avg. 1,060 ppmv). Two immobilized cell bioreactors 0.2 and 8.5 L in volume were loaded with aerobic sludge and used to study characteristics of H2S removal from biogas. At a retention time of 400 sec, the removal efficiency of H2S was over 99% following initial stabilization for 7 days in the 8.5 L bioreactor installed at the on-site biogas facility. The maximum rate of H2S removal in this study was 359 g-H2S/m3/h with an average mass loading rate of 14.7 g-H2S/m3/h (kinetic analysis: V m = 842.6 g-H2S/m3/h and K s = 2.2 mg/L). Therefore, purified biogas with a negligible concentration H2S was efficiently reformed to syngas. This study demonstrates the feasibility of biogas purification as a part of high-quality syngas production.  相似文献   

15.
The liquefaction of rice hull (a typical agricultural waste) has been conducted with n-butanol solvent at various reaction temperatures ranging from 260 to 320°C. As a result, it was found that biomass conversion rates were increased with increasing temperature up to 320dgC. However, it was observed that its rate of conversion to liquid was about 83% at 320°C for 30 min. The crude oil yield with rice hull increased up to 1,273 mg/g/L at 300°C, but the yield of Fraction 1 at 280°C was raised suddenly, and peaked at 2 times that of the initial input amount of feedstock. Furthermore, the calorific values of crude oil and Fraction 1 from rice hull were about 5,843 and 8,061 kcal/kg and were enhanced 163 and 225%, respectively, relative to its feedstock as rice hull, respectively. Fraction 1 may be suitable as an alternative liquid fuel of gasoline, based on an engine performance test. Sixty species of organic compounds in crude oil were categorized into 8 classes of compounds, including acids, alcohols, aliphatic hydrocarbons, ethers, esters, ketones, phenol, and aromatics, and others. In the crude oil from rice hull, the most common chemical types were esters and ethers accounting for 32.0 and 19.2% of the total extract, respectively. Analysis of Fraction 1 revealed that the main chemical components were C5H12O, C7H14O2, C8H16O2, and C12H26O2. Therefore, for producing clean and green fuel energy with plant biomass liquefaction it is necessary to further investigate crude oil and to further refine Fraction 1 through catalytic cracking or hydro-de-oxygenation (HDO).  相似文献   

16.
The current flow of carbon for the production, use, and waste management of polymer‐based products is still mostly linear from the lithosphere to the atmosphere with rather low rates of material recycling. In view of a limited future supply of biomass, this article outlines the options to further develop carbon recycling (C‐REC). The focus is on carbon dioxide (CO2) capture and use for synthesis of platform chemicals to produce polymers. CO2 may be captured from exhaust gases after combustion or fermentation of waste in order to establish a C‐REC system within the technosphere. As a long‐term option, an external C‐REC system can be developed by capturing atmospheric CO2. A central role may be expected from renewable methane (or synthetic natural gas), which is increasingly being used for storage and transport of energy, but may also be used for renewable carbon supply for chemistry. The energy input for the C‐REC processes can come from wind and solar systems, in particular, power for the production of hydrogen, which is combined with CO2 to produce various hydrocarbons. Most of the technological components for the system already exist, and, first modules for renewable fuel and polymer production systems are underway in Germany. This article outlines how the system may further develop over the medium to long term, from a piggy‐back add‐on flow system toward a self‐carrying recycling system, which has the potential to provide the material and energy backbone of future societies. A critical bottleneck seems to be the capacity and costs of renewable energy supply, rather than the costs of carbon capture.  相似文献   

17.
The gases CO, CO2, and H2 were used as substrates in anaerobic fermentations producing organic acids. Various mixed bacterial sources were used, including sewage sludge digester effluent, rabbit feces, and soil. Nonsterile microorganism selection was carried out using CO2/H2 and CO/H2 as the primary carbon and energy sources. Cultures were grown in specially designed, high-pressure (to 70 psig) flasks. Methanogenic bacteria were eliminated from the cultures. Liquid products of the fermentations were acetic through caproic acids, with the even-numbered acids predominating. Carbon balances showed conclusively that acetic acid was formed from carbon contained in the CO or CO2 feed gas. Measurements made included rates of acid product formation, cell density, and degree of gas utilization. Limited characterization of the microorganisms was also performed. Production of organic acids by mixed culture inocula from CO2/H2 or CO/H2 had not been reported previously. Application of this work is to the production of organic chemicals from synthesis gas (SNG), produced by the gasification of fossil fuels (peat, lignite, and various ranks of coals), biomass (agricultural and forest residues, and various biomass crops grown expressly for energy recovery), and municipal solid waste.  相似文献   

18.
Catalytic steam reforming of renewable feedstock to renewable energy or chemicals always goes with intense coking activities that produce carbonaceous products leading to low performance and eventual catalyst deactivation. Supported metal catalyst such as Ni/Al2O3 is known to catalysed gasification and decomposition of biomass feedstock largely for renewable fuel production with promising results. Catalyst deactivation from high carbon deposition, agglomeration and phase transformations resulting to rapid deactivation are some of the issues identified with the use of the catalyst. In this work, improvement on the coke resistance and catalytic properties of Ni/Al2O3 catalyst is sought via the use of a thermally stable and coke-resistant perovskite La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) as catalyst promoter/modifier and involving Zirconia-doped Ceria (Ce-Zr) as alternative support in steam reforming of pure and by-product glycerol. The stabilizing influence of the LSCM on the Ni catalyst has improved stability against agents of deactivation with a consequent significant improvement of catalytic activity of Ni/Al2O3 in H2 production and robust suppression of carbon deposition. Particularly, the synergy between the LSCM promoter and alternative Ce0.75Zr0.25O2 support enhanced the basic and redox properties known for Ce0.75Zr0.25O2 support in contrast to the week acid centres in γ-Al2O3 support which further improved nickel stability, catalyst–support interaction with a resultant high catalytic activity and robust coke suppression as a result of enhanced oxygen mobility. There is correlation between the product distribution, nature of coke deposited and reforming temperature as well as type of support and structural modification. Hence, integration of a robust perovskite material as a catalyst promoter and choice of support could be tailored in design and development of robust catalyst systems to improve the performance of supported metal catalysts, particularly the suppression of carbon deposition for hydrocarbon and biomass conversion to renewable fuel or chemicals.  相似文献   

19.
Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H2 and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials (‘Bio-Pd’) were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H2. Both strains produced hydrogen and OAs but ‘palladised’ cells of strain IC007 (Bio-PdIC007) produced ~threefold more power as compared to Bio-PdMC4100 (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.  相似文献   

20.
The conversion of glycerol into high value products, such as hydrogen gas and 1,3‐propanediol (PD), was examined using anaerobic fermentation with heat‐treated mixed cultures. Glycerol fermentation produced 0.28 mol‐H2/mol‐glycerol (72 mL‐H2/g‐COD) and 0.69 mol‐PD/mol‐glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol‐H2/mol‐glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol‐H2/mol‐glycerol (43 mL H2/g‐COD) and 0.59 mol‐PD/mol‐glycerol. These are the highest yields yet reported for both hydrogen and 1,3‐propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3‐propanediol for maximum utilization of resources and minimization of waste. Biotechnol. Bioeng. 2009; 104: 1098–1106. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号