首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NH2-terminal blocking group of the membrane-binding domain of NADH-cytochrome b5 reductase has been deduced as myristic (n-tetradecanoyl) acid. This fatty acid was identified by gas chromatography of the digest of the NH2-terminal tetrapeptide of cytochrome b5 reductase. Fast atom bombardment and direct chemical ionization mass spectroscopy of the underivatized NH2-terminal tetrapeptide confirmed the presence of myristic acid, identified its linkage to the NH2 terminus and established CH3(CH2)12-CO-Gly-Ala-Gln-Leu as the NH2-terminal sequence. In addition, the complete amino acid sequence of the membrane-binding domain of cytochrome b5 reductase is also reported. The finding of a myristic acyl chain on the NH2-terminal segment, comprised of hydrophobic amino acid residues, implies that the function of the myristate group may be other than simply to anchor the reductase to the microsomal membrane. This post-translational modification, presumably in the endoplasmic reticulum, may selectively stabilize a particular membrane structure and orientation that optimally facilitates electron transport on the cytosolic surface of this membrane organelle.  相似文献   

2.
NADH-cytochrome b5 reductase [EC 1.6.2.2] has been solubilized with Triton X-100 and purified to homogeneity from rabbit liver microsomes. The purified enzyme is essentially free of the detergent and phospholipids and exists in aqueous media as an oligomeric aggregate of about 13 S. Its monomeric molecular weight is about 33,000 and 1 mole of FAD is associated with 1 mole of the monomeric unit. The enzyme catalyzes the reductions by NADH of ferricyanide and 2,6-dichlorophenol indophenol at an activity ratio of 1 : 0.09. Although the intact form of cytochrome b5 is a poorer electron acceptor than its hydrophilic fragment for the purified flavoprotein, electron transfer from the reductase to the intact cytochrome can be markedly stimulated by detergents or phospholipids, which also cause profound enhancement of the NADH-cytochrome c reductase activity reconstituted from the reducatse and cytochrome b5. Upon digestion with trypsin [EC 3.4.21.4], the ability of the reductase to form an active NADH-cytochrome c reductase system with the intact form of cytochrome b5 and Triton X-100 is rapidly lost. This loss of the reconstitution capability can be prevented by preincubation of the reductase with phosphatidylcholine liposomes. Trypsin digestion also results in the cleavage of the reductase molecule to a protein having a molecular weight of about 25,000 and a smaller fragment. The purified flavoprotein can bind to liver microsomes, liver mitochondria, sonicated human erythrocyte ghosts, and phosphatidylcholine liposomes. The reductase solubilized directly from liver microsomes by lysosomal digestion however, is devoid of membrane-binding capacity. It is concluded that the intact form of NADH-cytochrome b5 reductase is an amphipathic protein and its hydrophobic moiety, which is removable by lysosomal digestion, is responsible for the tight binding of the reductase to microsomes and for its normal functioning in the membrane.  相似文献   

3.
I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.  相似文献   

4.
The complete primary structure of bovine heart cytochrome c1 was established by analyses of peptide fragments prepared by digestion using trypsin, staphylococcal protease, and chymotrypsin and by cyanogen bromide cleavage of cytochrome c1 and its derivatives. The total number of amino acid residues is 241, giving a molecular weight of 27,924 including the heme group. The NH2- and COOH-terminal residues are serine and lysine, respectively. One characteristic of the protein is that cytochrome c1 contains 43.6% hydrophobic residues and the polarity is estimated to be 41.1%. No clear homology was found between cytochrome c1 and other membranous proteins such as cytochrome b5 or the subunits of cytochrome oxidase for which sequences have been reported. Cytochrome c1 is predicted to have a high content of alpha-helix (46%). Partial sequence studies were also carried out on cytochrome c1 preparations obtained by different procedures and showed that there is no difference among the sequences of various preparations of cytochrome c1. The presence of a hydrophobic cluster near the COOH-terminal region indicates that the COOH-terminal region of cytochrome C1 associates with, or is buried in, the phospholipid bilayer of the mitochondrial membrane.  相似文献   

5.
Incubation of liposomes prepared by sonication of egg lecithin with the amphipathic form of cytochrome b5 results in the binding of a maximum of 244 molecules of cytochrome b5 per liposomal vesicle. Interactions of the phospholipid with the hydrophobic segment of cytochrome b5 are involved in this binding which does not disrupt the liposome. When a small amount of NADH-cytochrome b5 reductase is bound liposomes simultaneously with cytochrome b5, the two proteins catalyze the reduction of cytochrome c by NADH. A qualitative kinetic analysis reveals that all of the cytochrome b5 interacts with reductase, a result consistent with these protein undergoing translational diffusion in the plane of the membrane. This system and the purified stearyl coenzyme A desaturase provide a model to study the dynamics of protein andlipid interactions in this membrane-bound oxidative sequence.  相似文献   

6.
The primary structure of the membrane-binding segment of rabbit cytochrome b5 has been determined. This segment, prepared by trypsin digestion of the intact protein, consists of 43 amino acid residues and corresponds to the COOH-terminal end (residues 91-133) of the parent molecule. Deduction of the primary structure was based on automated sequence analysis of the whole segment as well as manual and dansyl-Edman degradations of peptide fragments produced by CNBr cleavage and partial acid hydrolysis. The sequence obtained is: Leu-Ser-Lys-Pro-Met-Glu-Thr-Leu-Ile-Thr-Thr-Val-Asn-Ser-Asn-Ser-Ser-Trp-Trp-Thr-Asn-Trp-Val-Ile-Pro-Ala-Ile-Ser-Ala-Leu-Ile-Val-Ala-Leu-Met-Tyr-Arg-Leu-Tyr-Met-Ala-Asp-Asp. This sequence is 63 to 81% homologous with respect to those determined for the membrane-binding segments of equine, porcine and bovine cytochrome b5. The interaction of this segment with phospholipid bilayer membranes is discussed, and a prediction of its secondary structure is also presented.  相似文献   

7.
The participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in the NADH-semidehydroascorbate (SDA) reductase activity of rat liver was studied. NADH-SDA reductase activity was strongly inhibited by antibodies against OM cytochrome b and NADH-cytochrome b5 reductase, whereas no inhibition was caused by anti-cytochrome b5 antibody. NADH-SDA reductase exhibited the same distribution pattern as OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity among various subcellular fractions and submitochondrial fractions. Both activities were localized in outer mitochondrial membrane. These observations suggest that OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase system participates in the NADH-SDA reductase activity of rat liver.  相似文献   

8.
Mammalian NADH-cytochrome b5 reductase (b5R) is an N-myristoylated protein that is dually targeted to ER and mitochondrial outer membranes. The N-linked myristate is not required for anchorage to membranes because a stretch of hydrophobic amino acids close to the NH2 terminus guarantees a tight interaction of the protein with the phospholipid bilayer. Instead, the fatty acid is required for targeting of b5R to mitochondria because a nonmyristoylated mutant is exclusively localized to the ER. Here, we have investigated the mechanism by which N-linked myristate affects b5R targeting. We find that myristoylation interferes with interaction of the nascent chain with signal recognition particle, so that a portion of the nascent chains escapes from cotranslational integration into the ER and can be post-translationally targeted to the mitochondrial outer membrane. Thus, competition between two cotranslational events, binding of signal recognition particle and modification by N-myristoylation, determines the site of translation and the localization of b5R.  相似文献   

9.
A peptide identified as the membrane-associated segment of NADPH-cytochrome P-450 reductase has been generated by steapsin protease treatment of vesicle-incorporated reductase and isolated by preparative gel electrophoresis. This peptide remains associated with vesicles when steapsin protease digests of vesicle-incorporated reductase were fractionated by Sepharose 4B chromatography, confirming its identity as the membrane-binding peptide. The molecular weight of the membrane-binding peptide was 6400 as determined by gel filtration in 8 M guanidine hydrochloride, and its amino acid content was not especially hydrophobic. The activity of reconstituted hydroxylation systems consisting of reductase, cytochrome P-446, and dilauroyl phosphatidylcholine was not inhibited by large molar excesses of purified membrane-binding peptide. Moreover, when purified reductase and cytochrome P-446 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptides were used. Similar results were obtained with reductase, cytochrome P-450, and detergent-solubilized liposomes (with or without the membrane-binding peptide). Thus, the membrane-binding peptide does not appear to interact with either of these two forms of the hemoprotein in a site-specific manner to prevent reconstitution of hydroxylation activity.  相似文献   

10.
11.
The microsomal flavoprotein NADPH-cytochrome P450 reductase (CPR) contains an N-terminal hydrophobic membrane-binding domain required for reconstitution of hydroxylation activities with cytochrome P450s. In contrast, cytochrome b5 (b5) contains a C-terminal hydrophobic membrane-binding domain required for interaction with P450s. We have constructed, expressed and purified a chimeric flavoprotein (hdb5-CPR) where the C-terminal 45 amino acid residues of b5 have replaced the N-terminal 56 amino acid domain of CPR. This hybrid flavoprotein retains the catalytic properties of the native CPR and is able to reconstitute fatty acid and steroid hydroxylation activities with CYP4A1 and CYP17A. However hdb5-CPR is much less effective than CPR for reconstituting activity with CYP3A4. We conclude that differences on the surface of the P450s reflect unique and specific information essential for the recognition needed to establish reactions of intermolecular electron transfer from the flavoprotein CPR.  相似文献   

12.
Previous studies identified two intrinsic endoplasmic reticulum (ER) proteins, 11beta-hydroxysteroid dehydrogenase, isozyme 1 (11beta-HSD) and the 50-kDa esterase (E3), sharing some amino acid sequence motifs in their N-terminal transmembrane (TM) domains. Both are type II membrane proteins with the C terminus projecting into the lumen of the ER. This finding implied that the N-terminal TM domains of 11beta-HSD and E3 may constitute a lumenal targeting signal (LTS). To investigate this hypothesis we created chimeric fusions using the putative targeting sequences and the reporter gene, Aequorea victoria green fluorescent protein. Transfected COS cells expressing LTS-green fluorescent protein chimeras were examined by fluorescent microscopy and electron microscopic immunogold labeling. The orientation of expressed chimeras was established by immunocytofluorescent staining of selectively permeabilized COS cells. In addition, protease protection assays of membranes in the presence and absence of detergents was used to confirm lumenal or the cytosolic orientation of the constructed chimeras. To investigate the general applicability of the proposed LTS, we fused the N terminus of E3 to the N terminus of the NADH-cytochrome b5 reductase lacking the myristoyl group and N-terminal 30-residue membrane anchor. The orientation of the cytochrome b5 reductase was reversed, from cytosolic to lumenal projection of the active domain. These observations establish that an amino acid sequence consisting of short basic or neutral residues at the N terminus, followed by a specific array of hydrophobic residues terminating with acidic residues, is sufficient for lumenal targeting of single-pass proteins that are structurally and functionally unrelated.  相似文献   

13.
The amino acid sequence of subunit VIII from yeast cytochrome c oxidase is reported. This 47-residue (Mr = 5364) amphiphilic polypeptide has a polar NH2 terminus, a hydrophobic central section, and a dilysine COOH terminus. An analysis of local hydrophobicity and predicted secondary structure along the peptide chain predicts that the hydrophobic central region is likely to be transmembranous. Subunit VIII from yeast cytochrome c oxidase exhibits 40.4% homology to bovine heart cytochrome c oxidase subunit VIIc , at the level of primary structure. Secondary structures and hydrophobic domains predicted from the sequences of both polypeptides are also highly conserved. From the location of hydrophobic domains and the positions of charged amino acid residues we have formulated a topological model for subunit VIII in the inner mitochondrial membrane.  相似文献   

14.
We have obtained and studied a 105,000-g pellet from T-3-Cl-2 cells, a cloned line of Friend virus-induced erythroleukemia cells. By difference spectrophotometry, the pellet was shown to contain cytochrome b5 and cytochrome P-450, hemeproteins that have been shown to participate in electron-transport reactions of endoplasmic reticulum and other membranous fractions of various tissues. The pellet also possesses NADH-cytochrome c reductase activity which is inhibited by anti-cytochrome b5 gamma-globulin, indicating the presence of cytochrome b5 reductase. This is the first demonstration of membrane-bound forms of these redox proteins in erythroid cells. Dimethyl sulfoxide-treated T-3-Cl-2 cells were also shown to possess membrane-bound cytochrome b5 and NADH-cytochrome c reductase activity. We failed to detect soluble cytochrome b5 in the 105,000-g supernatant fraction from homogenates of untreated or dimethyl sulfoxide-treated T-3-Cl-2 cells. In contrast, erythrocytes obtained from mouse blood were shown to possess soluble cytochrome b5 but no membrane-bound form of this protein. These findings are supportive of our hypothesis that soluble cytochrome b5 of erythrocytes is derived from endoplasmic reticulum or some other membrane structure of immature erythroid cells during cell maturation.  相似文献   

15.
Experiments were performed to demonstrate the involvement of electron transport system in fatty acid elongation in rat brain microsomes. Mercuric chloride and p-chloromercuriphenylsulfonate, inhibitors on NADH-cytochrome b5 reductase, at 32 microM inhibited NADH-supported palmitoyl-CoA elongation to 30 and 60% of control activity, respectively, whereas NADPH-supported palmitoyl-CoA elongation was unaffected by these mercurials. An antibody to rat liver NADH-cytochrome b5 reductase inhibited brain microsomal NADH-cytochrome b5 reductase activity and NADH-dependent palmitoyl-CoA elongation. Treatment of brain microsomes with trypsin diminished the cytochrome b5 content; NADH- and NADPH-cytochrome c reductase activities were significantly decreased, but the decrease in NADH-cytochrome b5 reductase activity was relatively small. Whereas essentially no incorporation of malonyl-CoA into palmitoyl-CoA was observed with trypsin-treated microsomes, addition of detergent-solubilized cytochrome b5 resulted in a recovery of fatty acid elongation. These results indicate the presence of an electron transport system, NADH-NADH-cytochrome b5 reductase-cytochrome b5-fatty acid elongation, in brain microsomes.  相似文献   

16.
The complete primary structure of the human oligodendrocyte-myelin glycoprotein (OMgp), a glycophospholipid-linked membrane protein of oligodendrocytes and central nervous system myelin, has been determined. The deduced amino acid sequence predicts a polypeptide of 433 amino acids which includes a 17-amino acid leader sequence. OMgp consists of four domains: (a) a short cysteine-rich motif at the NH2 terminus; (b) a series of tandem leucine-rich repeats (LRs) present in several other proteins where they may play roles in adhesion; (c) a serine/threonine-rich region that contains probable attachment sites for O-linked carbohydrates; and (d) a hydrophobic COOH-terminal segment that is likely to be cleaved concomitant with the attachment of lipid during biosynthesis of OMgp. OMgp shares the first three of its four domains with the platelet glycoprotein Ib, which is responsible for the initial adhesion of platelets to the exposed subendothelium during hemostasis. Together with glycoprotein Ib and several other proteins, OMgp belongs to a family of proteins that contain both an NH2-terminal cysteine-rich motif and an adjacent series of LRs. In addition, we report that a subpopulation of OMgp molecules contains the HNK-1 carbohydrate, which has been shown to mediate interactions among cells in the central nervous system.  相似文献   

17.
NADH-cytochrome b5 reductase is an amphiphilic protein consisting of a hydrophilic (FAD-containing) moiety and a hydrophobic (membrane-binding) segment and exists in aqueous media as an oligomeric aggregate. Circular dichroism studies have shown that denaturation of the reductase by guanidine hydrochloride in the presence of Emulgen 109P, a nonionic detergent, is a two-stage process as a function of the denaturant concentration. The first transition occurs at about 1 m guanidine hydrochloride and the second one at much higher concentrations. The guanidine hydrochloride concentration causing the second-stage unfolding depends on the concentration of Emulgen 109P. A hydrophilic fragment of the reductase lacking the hydrophobic segment undergoes one-stage denaturation at about 1 m guandine hydrochloride regardless of the presence and absence of Emulgen 109P. Both the reductase as well as the hydrophilic fragment lose their NADH-ferricyanide reductase activity and FAD also at about 1 m guanidine hydrochloride in the presence of the detergent. These findings suggest that the first-stage denaturation of the reductase represents the unfolding of the hydrophilic moiety and the second one that of the hydrophobic segment. Gel chromatography experiments have suggested that in the presence of Emulgen 109P the reductase exists as a mixed micelle with the detergent and this aggregation state persists even after the first-stage denaturation (unfolding of the hydrophilic moiety). The dissociation of the mixed micelle seems to take place concomitant with the second-stage denaturation. It is concluded that the two moieties of the reductase molecule, though linked to each other covalently, exist as independent domains undergoing unfolding separately at least in the presence of Emulgen 109P. This structural feature of the reductase is similar to that of cytochrome b5 reported by us. The reductase is, therefore, another example of amphiphilic membrane proteins having two structurally independent domains in the molecule.  相似文献   

18.
Detergent-solubilized HLA antigens were isolated from a human lymphoblastoid cell using an anti-beta2-microglobulin immunoaffinity column. The HLA-A and HLA-B locus products were separated by thin layer isoelectric focusing. Cleavage of the p44 chain of HLA-A2 and -B7 antigens with cyanogen bromide led to the isolation of a 31-amino-acid fragment from each. The fragments were sequenced and shown to be from the COOH-terminal end of the intact chains using carboxypeptidase Y. The fragment from the HLA-B7 chain, 55% of whose amino acids were polar, contained the 2 cysteine residues not found in the papain-derived molecule. The tentative sequence of the fragment from the HLA-A2 chain was similar to that of the HLA-B7 fragment but appeared not to contain any cysteine residues. The hydrophilic COOH-terminal region of HLA antigens, which directly follows the hydrophobic, membrane-binding segment, began with a cluster of basic amino acids. This arrangement of amino acids resembles that found at the COOH terminus of the red blood cell membrane protein, glycophorin.  相似文献   

19.
Reconstitution of the enzymatic activities using purified microsomal cytochrome P450s (P450) requires the presence of a membrane-binding segment in the mammalian flavoprotein, NADPH--cytochrome P450 reductase (CPR), and the hemeprotein, cytochrome b(5) (b(5)). The mechanism(s) by which the membrane-binding segments of these proteins exert such a critical role in influencing the reconstitution of the NADPH-supported activity of a P450 remains undefined. In the present work we describe the construction, expression, and purification of four different types of recombinant flavocytochromes containing rat b(5) and rat CPR linked by various membrane-binding segments. The physical properties of these artificial fusion proteins have been studied to determine their ability to serve as electron transfer agents. These studies are a prelude to the subsequent study (accompanying paper) evaluating the functional roles of the hydrophobic (membrane-binding) sequences of b(5) and CPR in the reconstitution of P450 activities. The present study shows that the purified recombinant fusion proteins can serve as active electron transport carriers from NADPH to cytochrome c as well as b(5) by intramolecular as well as intermolecular reactions. It is shown here that the electron transport properties of these purified fusion proteins are influenced by high concentrations of KCl, suggesting a role for charged amino acids in protein-protein interactions. The present study illustrates the application of artificial recombinant flavocytochromes as useful proteins for the study of intramolecular electron transport reactions for comparison with intermolecular interactions.  相似文献   

20.
Tissue, cellular, and subcellular distributions of OM cytochrome b-mediated NADH-semidehydroascorbate (SDA) reductase activity were investigated in rat. NADH-SDA reductase activity was found in the post-nuclear particulate fractions of liver, kidney, adrenal gland, heart, brain, lung, and spleen of rat. Liver, kidney, and adrenal gland had higher NADH-SDA reductase activity than other tissues, and OM cytochrome b-dependent activity was 60-70% of the total activity. On the other hand, almost all of the reductase activity of heart and brain cells was mediated by OM cytochrome b. The ratio of the OM cytochrome b-mediated activities of NADH-SDA reductase to rotenone-insensitive NADH-cytochrome c reductase varied among these tissues. OM cytochrome b-mediated NADH-SDA reductase and rotenone-insensitive NADH-cytochrome c reductase activities were mainly present in the parenchymal cells of rat liver. The localization of the cytochrome-mediated reductase activities in the outer mitochondrial membrane was confirmed by subfractionation of liver mitochondria. Among the submicrosomal fractions, OM cytochrome b-mediated NADH-SDA reductase activity was highest in the cis-Golgi membrane fraction, in which monoamine oxidase activity was also highest. On the other hand, OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity showed a slightly different distribution pattern from the NADH-SDA reductase activity. Thenoyltrifluoroacetone (TTFA), a metal chelator, effectively inhibited the NADH-SDA reductase activity, though other metal chelators did not affect the activity. TTFA failed to inhibit rotenone-insensitive NADH-cytochrome c reductase activity at the concentration which gave complete inhibition of NADH-SDA reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号