首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carcinogenicity of nickel compounds has been well documented both in vitro and in vivo; however, the molecular mechanisms by which nickel compounds cause cancers are far from understood. Because suppression of apoptosis is thought to contribute to carcinogenesis, we investigated the mechanisms implicated in nickel-induced anti-apoptotic effect in human bronchial epithelial (Beas-2B) cells. We found that exposure of Beas-2B cells to nickel compounds resulted in increased cyclooxygenase-2 (COX-2) expression and that small interfering RNA (siCOX-2) knockdown of COX-2 expression resulted in increased cell sensitivity to nickel-triggered cell apoptosis, demonstrating that COX-2 induction has an anti-apoptotic effect on Beas-2B cells. Overexpression of IKKbeta-KM, a kinase inactive mutant of IKKbeta, blocked NF-kappaB activation and COX-2 induction by nickel compounds, indicating that activated NF-kappaB may be a mediator for COX-2 induction. To further explore the contribution of the NF-kappaB pathway in COX-2 induction and in protection from nickel exposure, mouse embryonic fibroblasts deficient in IKKbeta, IKKalpha, p65, and p50 were analyzed. Loss of IKKbeta impaired COX-2 induction by nickel exposure, whereas knockout of IKKalpha had a marginal effect. Moreover, the NF-kappaB p65, and not the p50 subunit, was critical for nickel-induced COX-2 expression. In addition, a deficiency of IKKbeta or p65 rendered cells more sensitive to nickel-induced apoptosis as compared with those in wild type cells. Finally, it was shown that reactive oxygen species H(2)O(2) were involved in both NF-kappaB activation and COX-2 expression. Collectively, our results demonstrate that COX-2 induction by nickel compounds occurs via an IKKbeta/p65 NF-kappaB-dependent but IKKalpha- and p50-independent pathway and plays a crucial role in antagonizing nickel-induced cell apoptosis in Beas-2B cells.  相似文献   

2.
3.
Kim HP  Wang X  Chen ZH  Lee SJ  Huang MH  Wang Y  Ryter SW  Choi AM 《Autophagy》2008,4(7):887-895
Cigarette smoke-induced cell death contributes to the pathogenesis of chronic obstructive pulmonary disease, though the relative roles of apoptosis and autophagy remain unclear. The inducible stress protein heme oxygenase-1 (HO-1) confers cytoprotection against oxidative stress. We examined the relationships between these processes in human bronchial epithelial cells (Beas-2b) exposed to cigarette smoke extract (CSE). CSE induced morphological and biochemical markers of autophagy in Beas-2b cells and induced autophagosome formation as evidenced by formation of GFP-LC3 puncta and electron microscopic analysis. Furthermore, CSE increased the processing of microtubule-associated protein-1 light chain-3 (LC3B-I) to LC3B-II, within 1 hr of exposure. Increased LC3B-II was associated with increased autophagy, since inhibitors of lysosomal proteases and of autophagosome-lysosome fusion further increased LC3B-II levels during CSE exposure. CSE concurrently induced extrinsic apoptosis in Beas-2b cells involving early activation of death-inducing-signaling-complex (DISC) formation and downstream activation of caspases (-8,-9,-3). The induction of extrinsic apoptosis by CSE was dependent in part on autophagic proteins. Reduction of Beclin 1 levels with beclin 1 siRNA inhibited DISC formation and caspase-3/8 activation in response to CSE. LC3B siRNA also inhibited caspase-3/8 activation. The stress protein HO-1 protected against CSE-induced cell death by concurrently downregulating apoptosis and autophagy-related signaling. Adenoviral mediated expression of HO-1 inhibited DISC formation and caspase-3/9 activation in CSE-treated epithelial cells, diminished the expression of Beclin 1, and partially inhibited the processing of LC3B-I to LC3B-II. Conversely, transfection of Beas-2b with ho-1 siRNA augmented CSE-induced DISC formation and increased intracellular reactive oxygen species formation. HO-1 expression augmented CSE-induced phosphorylation of NFkappaB p65 in Beas-2b cells. Consistently, expression of IkappaB, the inhibitor of NFkappaB, increased CSE-induced DISC formation. LC3B siRNA also enhanced p65 phosphorylation. In fibroblasts from beclin 1 heterozygous knockout mice, p65 phosphorylation was dramatically upregulated, while CSE-induced DISC formation was inhibited, consistent with an anti-apoptotic role for NFkappaB and a pro-apoptotic role for Beclin 1. These studies demonstrated an interdependence of autophagic and apoptogenic signaling in CSE-induced cell death, and their coordinated downregulation by HO-1. An understanding of the regulation of cell death pathways during smoke exposure may provide therapeutic strategies in smoke-related illness.  相似文献   

4.
5.
6.
《Autophagy》2013,9(7):887-895
Cigarette smoke-induced cell death contributes to the pathogenesis of chronic obstructive pulmonary disease, though the relative roles of apoptosis and autophagy remain unclear. The inducible stress protein heme oxygenase-1 (HO-1) confers cytoprotection against oxidative stress. We examined the relationships between these processes in human bronchial epithelial cells (Beas-2b) exposed to cigarette smoke extract (CSE). CSE induced morphological and biochemical markers of autophagy in Beas-2b cells. CSE induced autophagosome formation as evidenced by formation of GFP-LC3 puncta and electron microscopic analysis. Furthermore, CSE increased the processing of microtubule-associated protein-1 light chain-3 (LC3B-I) to LC3B-II, within 1 hr of exposure. Increased LC3B-II was associated with increased autophagy, since inhibitors of lysosomal proteases and of autophagosome-lysosome fusion further increased LC3B-II levels during CSE exposure. CSE concurrently induced extrinsic apoptosis in Beas-2b cells involving early activation of death-inducing-signaling-complex (DISC) formation and downstream activation of caspases (-8,-9,-3). The induction of extrinsic apoptosis by CSE was dependent in part on autophagic proteins. Reduction of beclin-1 levels with beclin 1 siRNA inhibited DISC formation and caspase-3/8 activation in response to CSE. LC3B siRNA also inhibited caspase-3/8 activation.  相似文献   

7.
目的:探讨Sestrin2蛋白对热暴露肺上皮细胞凋亡的干预作用及其作用机制。方法:体外培养的Beas-2B细胞分为对照组(37℃)和热暴露组(39℃、40℃和41℃),在上述温度中暴露不同时间(0、3、6和12 h),胰酶消化后收集细胞,分别通过Western blot、荧光分光光度计、流式细胞仪等方法检测细胞中的Sestrin2、超氧化物歧化酶(SOD)、活性氧自由基(ROS)表达水平,细胞线粒体膜电位及细胞凋亡率。基因序列克隆入高表达质粒pcDNA 3.1+中,采用Lipfectamine 2000方法转染Beas-2B细胞,构建Sestrin2和SOD高表达细胞,观察细胞线粒体膜电位及细胞凋亡等指标的变化。结果:随着暴露温度的升高,与对照组相比,热暴露组细胞Sestrin2蛋白表达水平下降。在41℃热暴露Beas-2B细胞,不同时间点ROS水平显著上升,线粒体膜电位显著下降,细胞凋亡率增加。Sestrin2和SOD高表达细胞,在41℃暴露条件下,与对照组比较,ROS表达水平显著降低,线粒体膜电位下降幅度减小,热暴露导致细胞凋亡率降低。结论: Sestrin2能够通过线粒体膜电位和SOD缓解热暴露引起肺上皮细胞的凋亡,对Beas-2B细胞具有保护作用。  相似文献   

8.
9.
10.
11.
Chan MM  Chmura K  Chan ED 《Cytokine》2006,33(6):309-316
A satisfactory model describing the airway surface fluid (ASF) in the airways of persons with cystic fibrosis (CF) remains to be established due to theoretical challenges to both the "Hydration Hypothesis" and the "Salt Hypothesis." Irrespective of these models, inhaled hypertonic saline is often used to facilitate clearance of inspissated secretions. Hypertonicity induces interleukin-8 (IL-8) expression, a potent chemokine for neutrophils. The objectives of this study were: (i) to determine the relative contribution of three potential cis-regulatory elements in the regulation of NaCl-induced IL-8 production in BEAS-2B human bronchial epithelial cells, (ii) to compare NaCl-induced IL-8 expression in IB3-1 bronchial epithelial cells, which have the DeltaF508/W1282X mutation of the CF transmembrane conductance regulator (CFTR) gene, with that in C38 cells, which are IB3-1 cells stably transfected with a truncated but functional CFTR gene, and (iii) to compare equal osmolar concentrations of NaCl and D-sorbitol in the induction of IL-8 in all three cell types. In human bronchial epithelial cells, binding sites for NFkappaB, AP-1, and NF-IL6 in the 5'-flanking region of the IL-8 promoter are necessary for optimal NaCl induction of IL-8. Human bronchial epithelial cells with the DeltaF508/W1282X CFTR mutation produce an exaggerated amount of basal and NaCl-induced IL-8.  相似文献   

12.
13.
14.
15.
16.
Asthma is a chronic airway disease that causes excessive inflammation, oxidative stress, mucus production and bronchial epithelial cell apoptosis. Fructose-1,6-bisphosphatase (Fbp1) is one of the rate-limiting enzymes in gluconeogenesis and plays a critical role in several cancers. However, its role in inflammatory diseases, such as asthma, is unclear. Here, we examined the expression, function and mechanism of action of Fbp1 in asthma. Gene Expression Omnibus (GEO) data sets revealed that Fbp1 was overexpressed in a murine model of asthma and in interleukin (IL)-4- or IL-13-stimulated bronchial epithelial cells. We confirmed the findings in an animal model as well as Beas-2B and 16HBE cells. In vitro investigations revealed that silencing of Fbp1 reduced apoptosis and the proportion of cells in the G2/M phase, whereas overexpression led to increases. Fbp1 knock-down inhibited oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, whereas Fbp1 overexpression aggravated oxidative stress by suppressingthe Nrf2 pathway. Moreover, the Nrf2 pathway inhibitor ML385 reversed the changes caused by Fbp1 inhibition in Beas-2B and 16HBE cells. Collectively, our data indicate that Fbp1 aggravates oxidative stress-induced apoptosis by suppressing Nrf2 signalling, substantiating its potential as a novel therapeutic target in asthma.  相似文献   

17.
CCL5 (or RANTES (regulated upon activation, normal T cell expressed and secreted)) recruits T lymphocytes and monocytes. The source and regulation of CCL5 in pulmonary tuberculosis are unclear. Infection of the human alveolar epithelial cell line (A549) by Mycobacterium tuberculosis caused no CCL5 secretion and little monocyte secretion. Conditioned medium from tuberculosis-infected human monocytes (CoMTB) stimulated significant CCL5 secretion from A549 cells and from primary alveolar, but not upper airway, epithelial cells. Differential responsiveness of small airway and normal human bronchial epithelial cells to CoMTB but not to conditioned medium from unstimulated human monocytes was specific to CCL5 and not to CXCL8. CoMTB induced CCL5 mRNA accumulation in A549 cells and induced nuclear translocation of nuclear factor kappaB (NFkappaB) subunits p50, p65, and c-rel at 1 h; nuclear binding of activator protein (AP)-1 (c-Fos, FosB, and c-Jun) at 4-8 h; and binding of NF-interleukin (IL)-6 at 24 h. CCL5 promoter-reporter analysis using deletion and site-specific mutagenesis constructs demonstrated a key role for AP-1, NF-IL-6, and NFkappaB in driving CoMTB-induced promoter activity. The IL-1 receptor antagonist inhibited A549 and small airway epithelial cell CCL5 secretion, gene expression, and promoter activity. CoMTB contained IL-1beta, and recombinant IL-1beta reproduced CoMTB effects. Monocyte alveolar, but not upper airway, epithelial cell networks in pulmonary tuberculosis cause AP-1-, NF-IL-6-, and NFkappaB-dependent CCL5 secretion. IL-1beta is the critical regulator of tuberculosis-stimulated CCL5 secretion in the lung.  相似文献   

18.
19.
20.
Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), the major metabolite of B[a]P, has been well recognized as one ubiquitous carcinogen, but the molecular mechanism involved in its carcinogenic effect remains obscure. In the present study, we found that bronchial epithelial cells (Beas-2B) and hepatocytes treated with B[a]PDE presented a significant increase of cyclin D1 expression. Moreover, Akt, p70s6k, and MAPKs including JNK, Erks, and p38 were notably activated in B[a]PDE-treated Beas-2B cells, whereas NF-κB, NFAT, and Egr-1 were not. Our results demonstrated that JNK and Erks were required in B[a]PDE-induced cyclin D1 expression because the inhibition of JNK or Erks by a selective chemical inhibitor or dominant negative mutant robustly impaired the cyclin D1 induction by B[a]PDE. Furthermore, we found that overexpression of the dominant negative mutant of p85 (regulatory subunit of phosphatidylinositol 3-kinase) or Akt dramatically suppressed B[a]PDE-induced JNK and Erk activation as well as cyclin D1 expression, suggesting that cyclin D1 induction by B[a]PDE is via the phosphatidylinositol 3-kinase/Akt/MAPK-dependent pathway. In addition, we clarified that p70s6k is also involved in B[a]PDE-induced cyclin D1 expression because rampamycin pretreatment dramatically reduced cyclin D1 induction by B[a]PDE. More importantly, we demonstrated that up-regulated cyclin D1 by B[a]PDE plays a critical role in oncogenic transformation and tumorigenesis of Beas-2B cells. These results not only broaden our knowledge of the molecular mechanism of B[a]PDE carcinogenicity but also lead to the further study of chemoprevention of B[a]PDE-associated human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号