首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative studies in molecular and structural biology generally require accurate and precise determination of protein concentrations, preferably via a method that is both quick and straightforward to perform. The measurement of ultraviolet absorbance at 280 nm has proven especially useful, since the molar absorptivity (extinction coefficient) at 280 nm can be predicted directly from a protein sequence. This method, however, is only applicable to proteins that contain tryptophan or tyrosine residues. Absorbance at 205 nm, among other wavelengths, has been used as an alternative, although generally using absorptivity values that have to be uniquely calibrated for each protein, or otherwise only roughly estimated. Here, we propose and validate a method for predicting the molar absorptivity of a protein or peptide at 205 nm directly from its amino acid sequence, allowing one to accurately determine the concentrations of proteins that do not contain tyrosine or tryptophan residues. This method is simple to implement, requires no calibration, and should be suitable for a wide range of proteins and peptides.  相似文献   

2.
在蛋白质结构与功能的研究中,有时蛋白质溶液的浓度是一个重要的参数.紫外吸收法是测定蛋白质溶液浓度最为常用的方法,而已知蛋白质的消光系数是用紫外吸收法准确测定蛋白质溶液浓度的前提条件.在0.1 mol/L NaOH溶液中,蛋白质发生碱性水解,因而蛋白质溶液可以看作是色氨酸和酪氨酸的二元体系.以此为依据,给出了用碱水解的方法测定蛋白质消光系数的方法.这一方法操作步骤简便易行,蛋白质消光系数的计算公式简单明了.用这一碱水解的方法分别测定了几种氨基酸组成不同的蛋白质的消光系数,与文献数据对照,得到了令人满意的结果,测定误差均小于±5%.  相似文献   

3.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

4.
1. A method is given for the quantitative determination of free tryptophan or tryptophan in the intact protein by treating with ninhydrin in a mixture of formic acid and hydrochloric acid (reagent b), for 10min at 100 degrees C. Glycyltryptophan was used as a standard for the determination of tryptophan in the intact protein. The extinction at 390nm was linear in the range 0.05-0.5mumol for free tryptophan (in7120) and 0.05-0.30mumol for glycyltryptophan (in15400). 2. Free tryptophan in the presence of protein may be determined by treating with ninhydrin in a mixture of acetic acid and 0.6m-phosphoric acid (reagent a) for 10min at 100 degrees C, the extinction being linear for tryptophan in the range 0.05-0.9mumol. N-Terminal tryptophan peptides also give the typical yellow product on treatment with reagent a. 3. Tryptophan content of several pure intact proteins when treated with the above method gave values in good agreement with those reported by others. A mean tryptophan content of 11.25 (s.e.m. +/-0.08) mumol/100mg of protein was found in rat brain during development from 1 to 82 days after birth.  相似文献   

5.
Streptomyces subtilisin inhibitor, a dimeric protein proteinase inhibitor isolated in crystalline form by Murae et al. in 1972, contains three tyrosine and one tryptophan residues per monomer unit and has unusual fluorescence properties. When excited at 280 nm, it shows a characteristic fluorescence spectrum having a peak at 307 nm and a shoulder near 340 nm, a feature which has been recognized only for a very few cases in proteins containing both tryosine and tryptophan residues. When excited at 295 nm, at which tryrosine scarcely absorbs, the inhibitor shows an emission spectrum with a peak at 340 nm characteristic of a tryptophan residue. The emission with a peak at 307 nm is considered to arise from the tryrosine residues. The tryptophan quantum yield of Streptomyces subtilisin inhibitor excited at 295 nm is very small, indicating that the tryptophan florescence is strongly quenched in the native state of the inhibitor. Below pH 4 the peak of the fluorescence spectrum of the inhibitor excited at 280 nm shifts toward 340-350 nm with a concomitant increase in the quantum yield. The structural change induced by low pH seems to release the tryptophan fluorescence from the quenching.  相似文献   

6.
A spectrophotometric method makes it possible to determine the concentration of a protein after covalent modification of tryptophan residues by 2-hydroxy-5-nitrobenzyl bromide. Molar absorption coefficients for the 2-hydroxy-5-nitrobenzyl chromophore, reported here in the pH range from 4.0 to 10.9, can be used to correct the protein absorbance values at 280 nm, which then provides the basis for calculating protein concentration in the usual way. The method was tested with alpha-lactalbumin, beta-lactoglobulin, pepsin, and soybean trypsin inhibitor; spectrophotometrically estimated concentrations of these proteins agreed closely with values obtained by amino acid analysis.  相似文献   

7.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

8.
Spectroscopic measurement of protein concentration requires knowledge of the value of the relevant extinction coefficient. If the amino acid composition of a protein is known, however, extinction coefficients can be calculated approximately, provided that the values of the molar absorptivities for tryptophan and tyrosine residues in the protein are known. We have applied a matrix linear regression procedure and a mapping of average absolute deviations between experimental and calculated values to find molar extinction coefficients (epsilon M, 1 cm, 280 nm) of 5540 M-1 cm-1 for tryptophan and 1480 M-1 cm-1 for tyrosine residues in an "average" protein, as defined by a set of experimentally determined extinction coefficients for more than 30 proteins. Use of these values provides a significant improvement in extinction coefficient estimation over that obtained with the commonly used values obtained from solutions of model compounds in guanidine-HCl. The consistency of these results when compared to the large deviations often observed between experimentally determined extinction coefficients suggest that this method may offer acceptable accuracy in the initial estimation of molar absorptivities of globular proteins.  相似文献   

9.
Surface accessible amino acids can play an important role in proteins. They can participate in enzyme's active center structure or in specific intermolecular interactions. Thus, the information about selected amino acids' surface accessibility can contribute to the understanding of protein structure and function. In this paper, we present a simple method for surface accessibility mapping of tryptophan side chains by their chemical modification and identification by MALDI-TOF mass spectrometry. The reaction with 2-hydroxy-5-nitrobenzyl bromide, a common and highly specific covalent modification of tryptophan, seems to be very useful for this purpose. The method was tested on four model proteins with known spatial structure. In the native proteins (1) only surface accessible tryptophan side chains were found to react with the modification agent and (2) no buried one was found to react at lower reagent concentrations. These results indicate that the described method can be a potent tool for identification of surface-located tryptophan side chain in a protein of unknown conformation.  相似文献   

10.
1. Cd-binding protein was isolated from the hepato-pancreas of carp administered CdCl2 (2 mg/kg). 2. This protein had a high absorption at 254 nm derived from Cd-mercaptide binding, and a low absorption at 280 nm derived from the absence of aromatic amino acids; the authors recognized the presence of two types. 3. The amino acid composition of the proteins was determined. The contents of cysteine residues were 34.24% and 31.90% in MT-I and -II respectively. Tyrosine, phenylalanine, tryptophan, histidine, leucine and arginine residues were absent in both types.  相似文献   

11.
A molybdenum-containing iron-sulfur protein has been isolated from the sulfate reducer Desulfovibrioafricanus. The protein appears to be a complex protein of high molecular weight (112,000) composed of 10 subunits (mol. wt. 11,500) and containing a high amount of molybdenum (5–6 atoms/mole) with approx. 20 atoms each of iron and labile sulfide. The spectrum shows peaks at around 615, 410 and 325 nm with a protein peak at 280 nm. Its millimolar extinction coefficients at 615, 410 and 280 nm are 48.4, 64.4 and 141 respectively. The protein contains 106 amino-acid residues per subunit of mol. wt. 11,262 and the number of cysteine residues is 2 per subunit. The N-terminal sequence which has been determined up to 26 residues is characterized by its high degree of hydrophobicity.  相似文献   

12.
A protocol for dry weight determination of the concentration of protein, using 0.2-1.0 mg of protein per sample, has been presented and applied to nine proteins: bovine serum albumin, ovalbumin, bovine carbonic anhydrase B, galactoside binding protein (rabbit), lens calinaris lectin B, green pea lectin, soy bean agglutinin-m, wheat germ agglutinin, and antithrombin III. Dry weights, combined with spectrophotometry, have been used to calculate A1% 1 cm values at 280 nm for these proteins in dilute salt solutions and are compared with published values. From absorptivities at 288 and 280 nm in 6 M guanidine hydrochloride, the number of tryptophan residues per molecule has also been calculated and compared with literature values. These results demonstrate the utility of the present method of dry weight determination.  相似文献   

13.
Caldwell CR 《Plant physiology》1993,101(3):947-953
The in vitro effects of ultraviolet B (280-320 nm) radiation on microsomal membrane proteins and partially purified ribulose bisphosphate carboxylase (Rubisco) from cucumber (Cucumis sativus L.) was investigated by measuring the direct photolytic reduction of tryptophan fluorescence and the formation of fluorescent photooxidation products. Exposure of microsomes and Rubisco to monochromatic 300-nm radiation resulted in the loss of intrinsic tryptophan fluorescence and the production of blue-emitting fluorophores. The major product of tryptophan photolysis was tentatively identified as N-formylkynurenine (N-FK). Even though the rates of tryptophan photodegradation and N-FK formation were similar, the amount of blue fluorescence produced was significantly higher in the microsomes relative to Rubisco. Studies with various free radical scavengers and other modifiers indicated that tryptophan photodegradation requires oxygen and that the subsequent formation of N-FK may involve reactive oxygen species. The optimum wavelengths for loss of typtophan fluorescence were 290 nm for the microsomes and 280 nm for Rubisco. The temperature dependence of tryptophan fluorescence and rate of tryptophan photodegradation indicated an alteration in the cucumber microsomal membranes at about 24[deg]C, which influenced protein structure and tryptophan photosensitivity.  相似文献   

14.
A method for identifying cysteine-containing peptides in proteins is presented using 2-bromoacetamido-4-nitrophenol (BNP) to introduce an easily detectable probe. The formation of a covalent bond between the protein sulfhydryl group and the acetamido moiety of BNP introduces a chromophore with an absorbance maximum at 410 nm. The modified protein can then be cleaved with appropriate proteases and the resulting peptides separated by chromatographic methods. Monitoring the effluent at a single wavelength (405 nm) provides a rapid and simple method of detecting and isolating only those peptides which contain cysteine residue(s). The nitrophenol derivative is stable under conditions required for protease cleavage. The reagent is therefore useful for locating cysteine-containing peptides in protein digests and can be used to explore the accessibility of different cysteines under a variety of conditions. The ease of modification, specificity of reaction, product stability, and simple detection of modified peptides make BNP ideal for investigation of cysteine residues.  相似文献   

15.
7-Amino-4-methylcoumarin-3-acetic acid (AMCA) has been found to be a useful fluorophore for immunofluorescence. The present study describes a spectrophotometric method for determining the ratio of moles AMCA to moles protein (or the f/p ratio) in an AMCA-conjugated IgG. The concentration of a substance absorbing light can be determined spectrophotometrically using Beer's Law: Absorbance = Concentration x Extinction coefficient. From Beer's law, one can derive the following formula for determining the f/p ratio of AMCA-IgG conjugates: f/p = (epsilon 280IgG).A350 - (epsilon 350IgG).A280/(epsilon 350AMCA).A280 - (epsilon 280AMCA).A350 where A is the optical density of the conjugate at the given wavelength and epsilon is the extinction coefficient of a substance at the wavelength specified. Using conjugates of model proteins, it was found that the extinction coefficients of the AMCA moiety of AMCA-conjugated protein were 1.90 x 10(4) at 350 nm and 8.29 x 10(3) at 280 nm. Similarly, it was found that the extinction coefficients of swine IgG were 1.56 x 10(3) at 350 nm and 1.26 x 10(5) at 280 nm. Thus, for AMCA-conjugated swine IgG: f/p = (1.26 x 10(5)).A350 - (1.56 x 10(3)).A280/(1.47 x 10(4)).A280 - (6.42 x 10(3)).A350 [corrected]. Based on this formula, the f/p ratios of some AMCA-IgG conjugates useful for immunohistochemistry have been found to range between 6 and 24.  相似文献   

16.
Waddell's method of estimating protein concentration by the difference between spectrophotometric absorptions (215-225 nm) has been reexamined. Over limited ranges of total protein, a linear relation was found for ten purified proteins; the narrowest range was between 5 and 25 micrograms/ml. Using published extinction coefficients at 280 nm for these ten proteins, protein concentration at 280 nm correlated closely with the 215 nm/225 nm difference measurements (mean difference of 2.6%). Waddell's method also accurately determined the total protein in a mixture of proteins with widely varying individual 280-nm extinction coefficients. Biuret estimates of total protein in plasma or serum gave poor correlation with measurements by Waddell's method. Within protein concentration limits, Waddell's method was linear, narrow, and more variable, both for individual proteins and for protein mixtures, than previously reported. Within these limits, the method is probably as accurate a measure of total protein as measurement by nitrogen analysis, with the advantage of being nondestructive.  相似文献   

17.
Two new double-headed protease inhibitors from black-eyed peas have amino acid compositions typical of the low molecular weight protease inhibitors from legume seeds. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 83 amino acid residues per monomer. Black-eyed pea trypsin inhibitor (BEPTI) contains no tryptophan, 1 tyrosine, and 14 half-cystines out of 75 residues per monomer. The molar extinctions at 280 nm are 2770 for BEPCI and 3440 for BEPTI. The single tyrosyl residue is very inaccessible to solvent in native BEPCI and BEPTI at neutral pH and titrates anomalously with an apparent pK = 12. Ionization of tyrosine is complete in 13 hours above pH 12. No heterogeneity of the local environment of the tyrosyl residues in different subunits can be detected spectrophotometrically. The large number of cystine residues leads to an intense and complex near-ultraviolet CD spectrum with cystine contributions in the regions of 248 and 280 nm and tyrosine contributions at 233 and 280 nm. An intact disulfide structure is required for appearance of the tyrosyl CD bands. The inhibitors are unusually resistant to denaturation when compared with similar low molecular weight proteins of high disulfide content. All observations are consistent with a far more rigid structure for BEPCI and BEPTI than for a typical protein.  相似文献   

18.
The detergents which contain a hydrocarbon side chain longer than 16 cabron atoms were used as a perturbant for the study of protein structure. ta low concentration of cetyldimethylbenzylammonium chloride (CDBA) caused difference spectra for Ac-Trp-OEt and AC-Tyr-OEt. The delta e values at their difference maxima became constant above 30 mM of cetyldimethylbenzylammonium chloride, 1430 at 294 nm for Ac-Trp-OEt and 450 at 288 nm for Ac-Tyr-OEt. These delta e values are higher than any other delta e values resulting from solvent effects by such a remarkably low concentration of organic reagents described in the literature so far. The absence of denaturation blue shift in the difference spectra and the fact that the optical rotatory dispersion of the proteins examined in the present study was not changed significantly by cetyldimethylbenzylammonium chloride indicate that the secondary and tertiary structures of the proteins were not destroyed by cetyldimethylbenzylammonium chloride. These characteristics, together with small overlapping of their difference spectra at 288 and 294 nm were advantageous in the determination of tryptophan and tyrosine residues exposed in glucagon, insulin and alcohol dehydrogenase from yeast. No tyrosine residues in ribonuclease A was accessible to cetyldimethylbenzylammonium chloride. Unusual difference spectrum with a peak at 298 nm was observed for lysozyme which is known to contain tryptophan residues in special environments. Ovalbumin gave a novel unusual difference spectrum with a peak at 290 nm and a shoulder at 298 nm, showing the existence of unusual tryptophan and probably tyrosine residues in the molecule.  相似文献   

19.
Homogeneous noncompetitive assay of a protein in biological samples based on Förster-resonance-energy-transfer (FRET) was proposed by using its tryptophan residues as intrinsic donors and its specific fluorescent ligand as the FRET acceptor that was defined as an analytical FRET probe. Conjugate of a suitable fluorophore, which should have an excitation peak around 340 nm but an excitation valley around 280 nm, with a moiety binding to a protein of interest gave an analytical FRET probe to the protein. To test this method, N-biotinyl-N′-(1-naphthyl)-ethylenediamine (BNEDA) was used as an analytical FRET probe for homogeneous noncompetitive assay of streptavidin (SAV). The occurrence of FRET between the bound BNEDA and tryptophan residues was supported by the modeled geometry of the complex. By excitation at 280 nm, free BNEDA produced negligible fluorescence at 430 nm, but the bound BNEDA produced much higher stable fluorescence at 430 nm after 2 min of binding reaction. The competitive binding between BNEDA and biotin gave the dissociation constant of (16 ± 3) fM for BNEDA (n = 3). By excitation at 280 nm, fluorescence at 430 nm of reaction mixtures containing 32.0 nM BNEDA responded linearly to SAV subunit concentrations ranging from 0.40 to 30.0 nM with the desirable resistance to common interferences in biological samples. Therefore, by using tryptophan residue(s) in a protein of interest as intrinsic donor(s) and its fluorescent ligand as the corresponding FRET acceptor, this homogeneous noncompetitive assay of the protein in biological samples was effective and advantageous.  相似文献   

20.
Ribulose 1,5-bisphosphate carboxylase [3-phospho-D-glyceratecarboxy-lyase (dimerizing), EC 4.1.1.39] is rapidly and irreversibly inactivated by micromolar concentrations of dimethyl (2-hydroxy-5-nitrobenzyl) sulphonium bromide (DMHNB), a tryptophan selective reagent, after reversible protection of the reactive sulphydryl groups. The inactivation followed pseudo-first-order reaction kinetics. Replots of the kinetic data indicated that no reversible enzyme-inhibitor complex was formed prior to irreversible modification. Kinetic analysis and the correlation of the spectral data at 410 nm with enzyme activity indicated that inactivation by DMHNB resulted from modification of on an average one tryptophan per 67 kDa combination of large and small subunits. Several competitive inhibitors and substrate RuBP offered strong protection against inhibition. The k1/2 (protection) for RuBP was 1.3 mM, indicating that the tryptophan residues may be located at or near the substrate binding site. Free and total sulphydryl groups were not affected by the reagent. The modified enzyme exhibited significantly reduced intrinsic fluorescence, indicating that the microenvironment of the tryptophans at the active site is significantly perturbed. Tryptic peptide profiles and CD spectral analyses suggested that inactivation may not be due to the extensive conformational changes in the enzyme molecule during modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号