首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5alpha(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (-)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3, 4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (-)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1, 2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.  相似文献   

2.
3.
4.
Wang X  Wang XJ  Ching CB 《Chirality》2002,14(4):318-324
Characterization of the racemic species, which can be a racemic compound, a racemic conglomerate, or a pseudoracemate (solid solution), is a prerequisite for the design of crystallization resolution processes. It is useful to determine the solid/liquid equilibrium solubility of the enantiomer mixtures for crystallization operation. For the beta-blocker drug propranolol hydrochloride, Gibbs free energy of formation of racemic compound and entropy of mixing of the (R)- and (S)- enantiomers in the liquid state for racemic conglomerate were calculated. The structural differences between (R, S)-propranolol hydrochloride and its (S)-enantiomer were further investigated by powder X-ray diffraction patterns, infrared spectra, and solid-state NMR spectra. The solubility and metastable zone width of (R, S)- propranolol hydrochloride in a mixed solvent of methanol and acetone were determined by cooling crystallization over the temperature range 3.5-42.5 degrees C. The ternary solubility diagram of (R)-, (S)-propranolol hydrochloride was constructed using the same mixed solvent. The diagram will be useful as a guide for choosing crystallization operation conditions to produce pure enantiomers.  相似文献   

5.
6.
7.
The effect of a synthetic pair of enantiomeric cannabinoids on platelet function was evaluated. The nonpsychotropic enantiomer, the 1,1-dimethylheptyl homolog of (+)-(3S,4S)-7-hydroxy-delta-6-tetrahydrocannabinol (HU-211), was found to be more active in inhibiting ADP-induced platelet aggregation than the highly psychotropic (-)-enantiomer (HU-210). The related (+)-(3R,4R) cannabinoid, HU-213, which lacks the 7-hydroxy moiety, exerted its inhibitory effect within a wider range of concentrations. The results indicate a differentiation between psychotropic activity and inhibition of platelet aggregation in the cannabinoid group of compounds.  相似文献   

8.
W Schüler  C Dong  K Wecker  B P Roques 《Biochemistry》1999,38(40):12984-12994
The structure of the 56 amino acid nucleocapsid protein NCp10 of retrovirus MoMuLV, which contains a single CX(2)CX(4)HX(4)C-type zinc finger, has been determined previously by NMR. The important role of NCp10 (or NCp7 for HIV-1) in the retroviral life cycle seems mainly related to their preferential binding to single-stranded nucleic acids. We report here the structure of the complex formed between the biologically active (14-53)NCp10 and the oligonucleotide d(ACGCC) in aqueous solution determined by 2D (1)H NMR based methods. The aromatic residue Trp(35) of NCp10 directs nucleic acid complexation as shown by its complete fluorescence quenching upon addition of d(ACGCC). (1)H and (31)P NMR studies support the insertion of Trp(35) between the G(3) and C(4) bases. A total of 577 NOE distance restraints, of which 40 were intermolecular, were used for the structure determination. The zinc finger provides a well-defined surface for the binding of d(ACGCC) through hydrophobic interactions and tryptophan stacking on the guanine. This latter interaction was also observed in the NMR-derived structures of the complexes between NCp7, which contains two successive zinc fingers, and single-stranded DNA and RNA, supporting the proposal for a major role played by aromatic residues of NCp proteins in nucleic acid recognition. Upon binding to the nucleotide a new loop in NCp10 that participates in the intermolecular interaction is formed. Additional interactions provided by positively charged residues surrounding the zinc finger appear necessary for tight binding. The structure of the complex NCp10-d(ACGCC) gives a structural explanation for the loss of virus infectivity following point mutations in the finger domain.  相似文献   

9.
Recently, Asante-Appiah et al. (Asante-Appiah, E.; Seetharaman, J.; Sicheri, F.; Yang, D. S.-C.; Chan, W. W.-C. Biochemistry 1997, 36, 8710 8715) reported that 2-ethyl-2-methylsuccinic acid is a highly potent inhibitor for carboxypeptidase A (CPA), a prototypic zinc protease. The X-ray crystal structure of the complex of the enzyme formed with 2-ethyl-2-methylsuccinic acid revealed that at the active site of CPA there is present a small cavity which accommodates the methyl group of the inhibitor. These investigators postulated that incorporation of a methyl group at the alpha-position to the carboxylate of existing inhibitors of CPA would improve the inhibitory potency. We have synthesized racemic and optically active 2-benzyl-2-methylsuccinic acids and evaluated their inhibitory activities for CPA to find the K(i) values to be 0.28, 0.15, and 17microM for racemic form, (R)-, and (S)-enantiomer, respectively. Contrary to the expectation, the effect on the binding affinity by the incorporation of the methyl group is minimal. The validity of the proposition that the small cavity may be utilized for the improvement of the inhibitory potency appears questionable.  相似文献   

10.
NCp8 of HIV-2 contains two CCHC-type zinc fingers connected by a linker, and is involved in many critical steps of the virus life cycle. It was previously shown that the first zinc finger flanked by the linker is the minimal active domain for specific binding to viral RNA. In our previous study, we determined the three-dimensional structure of NCp8-f1, including the minimal active domain, and found that a hydrogen bond between Asn(11) N(delta)H and Arg(27) O stabilized the conformation of the linker in the vicinity of the zinc finger [Kodera et al. (1998) Biochemistry 37, 17704-17713]. In this study, RNA binding activities of NCp8-f1 and three types of its mutant peptides were analysed by native PAGE assay. The activity and three-dimensional structure of NCp8-f1/N11A, in which alanine is substituted for Asn(11) thereby affecting the conformation of the linker, was analyzed and compared with those of NCp8-f1. We demonstrated that the existence of Arg(4) and/or Lys(5) and Arg(26) and/or Arg(27) were necessary for binding RNA. Furthermore, the linker's flexible orientation, which is controlled by the hydrogen bond between Asn(11) N(delta)H and Arg(27) O, appears to be a structural basis for NCp8 existing as a multi-functional protein.  相似文献   

11.
12.
13.
The nucleocapsid proteins (NCps) of lentiviruses play a key role during the retroviral replication cycle. NCps contain one or two highly conserved domains characterized by a CX(2)CX(4)HX(4)C sequence which binds zinc with a high affinity. The reasons of the high conservation of zinc fingers of CCHC type in lentiviruses were investigated by a structural study of mutants in which the zinc-coordinated ligands were exchanged. The HCHC form was unable to bind zinc tetrahedrally, whereas in His(28)(13-30)NCp7 corresponding to the CCHH motif, the zinc was tightly complexed. The mutant peptide exists in two interconverting conformations E and D [DeltaG(DE) (293K) = 0.1 kcal/mol] arising from the zinc coordination of His(28), by either its Nepsilon2 or its Ndelta1, respectively. As compared to the native CCHC zinc finger, the Cys(28) --> His mutation induces structural changes in the finger due to a modification in the coordination state of His(23) bound to zinc by Nepsilon2 in the wild-type finger by Ndelta1 in both conformers of the mutant. Introduction of these single mutations within the NCp7 proximal zinc finger in the HIV-1 genome was very recently shown to result in a loss of viral infection. This supports the hypothesis that structural changes of the zinc finger domain of NCp7 inhibit the recognition of one or several targets critically involved in the virus life cycle.  相似文献   

14.
The interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and the CD4 receptor is highly specific and involves relatively small contact surfaces on both proteins according to crystal structure analysis. This molecularly conserved interaction presents an excellent opportunity for antiviral targeting. Here we report a group of pentavalent antimony-containing small molecule compounds, NSC 13778 (molecular weight, 319) and its analogs, which exert a potent anti-HIV activity. These compounds block the entry of X4-, R5-, and X4/R5-tropic HIV-1 strains into CD4(+) cells but show little or no activity in CD4-negative cells or against vesicular stomatitis virus-G pseudotyped virions. The compounds compete with gp120 for binding to CD4: either immobilized on a solid phase (soluble CD4) or on the T-cell surface (native CD4 receptor) as determined by a competitive gp120 capture enzyme-linked immunosorbent assay or flow cytometry. NSC 13778 binds to an N-terminal two-domain CD4 protein, D1/D2 CD4, immobilized on a surface plasmon resonance sensor chip, and dose dependently reduces the emission intensity of intrinsic tryptophan fluorescence of D1/D2 CD4, which contains two of the three tryptophan residues in the gp120-binding domain. Furthermore, T cells incubated with the compounds alone show decreased reactivity to anti-CD4 monoclonal antibodies known to recognize the gp120-binding site. In contrast to gp120-binders that inhibit gp120-CD4 interaction by binding to gp120, these compounds appear to disrupt gp120-CD4 contact by targeting the specific gp120-binding domain of CD4. NSC 13778 may represent a prototype of a new class of HIV-1 entry inhibitors that can break into the gp120-CD4 interface and mask the gp120-binding site on the CD4 molecules, effectively repelling incoming virions.  相似文献   

15.
The synthesis and antiviral properties of pyridinioalkanoyl thioester (PATE) compounds that target nucleocapsid p7 protein (NCp7) of the human immunodeficiency virus type 1 (HIV-1) have been described previously (Turpin, J. A., Song, Y., Inman, J. K., Huang, M., Wallqvist, A., Maynard, A., Covell, D. G., Rice, W. G., and Appella, E. (1999) J. Med. Chem. 42, 67-86). In the present study, fluorescence and electrospray ionization-mass spectrometry were employed to determine the mechanism of modification of NCp7 by two lead compounds, N-[2-(5-pyridiniovaleroylthio)benzoyl]sulfacetamide bromide and N-[2-(5-pyridiniovaleroylthio)benzoyl]-4-(4-nitrophenylsulfonyl )anili ne bromide (compounds 45 and 47, respectively). Although both compounds exhibit antiviral activity in cell-based assays, we failed to detect appreciable ejection of zinc from NCp7 under conditions in which previously described NCp7-active disulfides readily eject zinc. However, upon "activation" by Ag(+), compound 45 reacted with NCp7 resulting in the zinc ejection from both zinc fingers. The reaction followed a two-step mechanism in which zinc was ejected from the carboxyl-terminal zinc finger faster than from the amino-terminal zinc finger. Both compounds covalently modified the protein with pyridinioalkanoyl groups. Compound 45 modified cysteines 36 and 49 of the carboxyl-terminal zinc finger. The results obtained herein demonstrate that PATE compounds can be constructed that selectively target only one of the two zinc fingers of NCp7, thus providing an impetus to pursue development of highly selective zinc finger inhibitors.  相似文献   

16.
17.
18.
This study examines the ability of P450cam to catalyze the formation of 2-ethylhexanoic acid from 2-ethylhexanol relative to its activity on the natural substrate camphor. As is the case for camphor, the P450cam exhibits stereoselectivity for binding (R)- and (S)-2-ethylhexanol. Kinetic studies indicate (R)-2-ethylhexanoic acid is produced 3.5 times as fast as the (S)-enantiomer. In a racemic mixture of 2-ethylhexanol, P450cam produces 50% more (R)-2-ethylhexanoic acid than (S)-2-ethylhexanoic acid. The reason for stereoselective 2-ethylhexanoic acid production is seen in regioselectivity assays, where (R)-2-ethylhexanoic acid comprises 50% of total products while (S)-2-ethylhexanoic acid comprises only 13%. (R)- and (S)-2-ethylhexanol exhibit similar characteristics with respect to the amount of oxygen and reducing equivalents consumed, however, with (S)-2-ethylhexanol turnover producing more water than the (R)-enantiomer. Crystallographic studies of P450cam with (R)- or (S)-2-ethylhexanoic acid suggest that the (R)-enantiomer binds in a more ordered state. These results indicate that wild-type P450cam displays stereoselectivity toward 2-ethylhexanoic acid synthesis, providing a platform for rational active site design.  相似文献   

19.
20.
J Dannull  A Surovoy  G Jung    K Moelling 《The EMBO journal》1994,13(7):1525-1533
The nucleocapsid (NC) protein of human immunodeficiency virus HIV-1 (NCp7) is responsible for packaging the viral RNA by recognizing a packaging site (PSI) on the viral RNA genome. NCp7 is a molecule of 55 amino acids containing two zinc fingers, with only the first one being highly conserved among retroviruses. The first zinc finger is flanked by two basic amino acid clusters. Here we demonstrate that chemically synthesized NCp7 specifically binds to viral RNA containing the PSI using competitive filter binding assays. Deletion of the PSI from the RNA abrogates this effect. The 35 N-terminal amino acids of NCp7, comprising the first zinc finger, are sufficient for specific RNA binding. Chemically synthesized mutants of the first zinc finger demonstrate that the amino acid residues C-C-C/H-C/H are required for specific RNA binding and zinc coordination. Amino acid residues F16 and T24, but not K20, E21 and G22, located within this zinc finger, are essential for specific RNA binding as well. The second zinc finger cannot replace the first one. Furthermore, mutations in the basic amino acid residues flanking the first zinc finger demonstrate that R3, 7, 10, 29 and 32 but not K11, 14, 33 and 34 are also essential for specific binding. Specific binding to viral RNA is also observed with recombinant NCp15 and Pr55Gag. The results demonstrate for the first time specific interaction of a retroviral NC protein with its PSI RNA in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号