共查询到20条相似文献,搜索用时 15 毫秒
1.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
2.
Tezuka N Brown AM Yanagawa S 《Biochemical and biophysical research communications》2007,357(3):648-654
During adipocyte differentiation, the cells experience dramatic alterations in morphology, motility and cell-ECM contact. Focal adhesion kinase (pp125FAK), a widely expressed non-receptor tyrosine kinase in integrin signaling, has been reported to participate in these events in various cells. Utilizing 3T3-L1 cells and primary rat preadipocytes, we explored the role of FAK in adipocyte differentiation. Gradual cleavage of FAK was demonstrated during adipcoyte differentiation, both in vitro and in vivo. This cleavage of FAK was mediated by calpain. Inhibition of calpain activity resulted in the rescue of FAK degradation, accompanied with the disturbance of final maturation of adipocyte. Our study revealed that FAK participated in adipocyte differentiation, and its cleavage by calpain was required to fulfill the final maturation of adipocytes. 相似文献
3.
4.
Ondrej Machon Jana Kreslova Jana Ruzickova Tomas Vacik Lucie Klimova Naoko Fujimura Jitka Lachova Zbynek Kozmik 《Genesis (New York, N.Y. : 2000)》2010,48(2):86-95
Lens formation in mouse is critically dependent on proper development of the retinal neuroectoderm that is located close beneath the head surface ectoderm. Signaling from the prospective retina triggers lens‐specific gene expression in the surface‐ectoderm. Supression of canonical Wnt/β‐catenin signaling in the surface ectoderm is one of the prerequisites for lens development because, as we show here, ectopic Wnt activation in the retina and lens abrogates lens formation. Wnt inhibiton is mediated by signals coming from the retina but its exact mechanism is unknown. We show that Pax6 directly controls expression of several Wnt inhibitors such as Sfrp1, Sfrp2, and Dkk1 in the presumptive lens. In accordance, absence of Pax6 function leads to aberrant canonical Wnt activity in the presumptive lens that subsequently impairs lens development. Thus Pax6 is required for down‐regulation of canonical Wnt signaling in the presumptive lens ectoderm. genesis 48:86–95, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
5.
Kulkarni NH Halladay DL Miles RR Gilbert LM Frolik CA Galvin RJ Martin TJ Gillespie MT Onyia JE 《Journal of cellular biochemistry》2005,95(6):1178-1190
The Wnt signaling pathway has recently been demonstrated to play an important role in bone cell function. In previous studies using DNA microarray analyses, we observed a change in some of the molecular components of the canonical Wnt pathway namely, frizzled-1 (FZD-1) and axil, in response to continuous parathyroid hormone (PTH) treatment in rats. In the present study, we further explored other components of the Wnt signaling pathway in rat distal metaphyseal bone in vivo, and rat osteoblastic osteosarcoma cells (UMR 106) in culture. Several Wnt pathway components, including low-density lipoprotein-receptor-related protein 5 (LRP5), LRP6, FZD-1, Dickkopf-1 (Dkk-1), and Kremen-1 (KRM-1), were expressed in bone in vivo and in osteoblasts in vitro. Continuous exposure to PTH (1-38) both in vivo and in vitro upregulated the mRNA expression of LRP6 and FZD-1 and decreased LRP5 and Dkk-1. These effects in UMR 106 cells were associated with an increase in beta-catenin as measured by Western blots and resulted in functional activation (three to six-fold) of a downstream Wnt responsive TBE6-luciferase (TCF/LEF-binding element) reporter gene. Activation of the TBE6-luciferase reporter gene by PTH (1-38) in UMR 106 cells was inhibited by the protein kinase A (PKA) inhibitor, H89. Activation was mimicked by PTH (1-31), PTH-related protein (1-34), and forskolin, but both PTH (3-34) and (7-34) had no effect. These findings suggest that the effect of PTH on the canonical Wnt signaling pathway occurs at least in part via the cAMP-PKA pathway through the differential regulation of the receptor complex proteins (FZD-1/LRP5 or LRP6) and the antagonist (Dkk-1). Taken together, these results reveal a possible role for the Wnt signaling pathway in PTH actions in bone. 相似文献
6.
There is considerable evidence that the Cdx gene products impact on vertebral patterning by direct regulation of Hox gene expression. Data from a number of vertebrate model systems also suggest that Cdx1, Cdx2 and Cdx4 are targets of caudalizing signals such as RA, Wnt and FGF. These observations have lead to the hypothesis that Cdx members serve to relay information from signaling pathways involved in posterior patterning to the Hox genes. Regulation of Cdx1 expression by RA and Wnt in the mouse has been well characterized; however, the means by which Cdx2 and Cdx4 are regulated is less well understood. In the present study, we present data suggesting that Cdx4 is a direct target of the canonical Wnt pathway. We found that Cdx4 responds to exogenous Wnt3a in mouse embryos ex vivo, and conversely, that its expression is down-regulated in Wnt3a(vt/vt) embryos and in embryos cultured in the presence of Wnt inhibitors. We also found that the Cdx4 promoter responds to Wnt signaling in P19 embryocarcinoma cells and have identified several putative LEF/TCF response elements mediating this effect. Consistent with these data, chromatin immunoprecipitation assays from either embryocarcinoma cells or from the tail bud of embryos revealed that LEF1 and beta-catenin co-localize with the Cdx4 promoter. Taken together, these results suggest that Cdx4, like Cdx1, is a direct Wnt target. 相似文献
7.
8.
9.
Itishri Sahu Seema Mishra R. Undi Ravinder Kandi Usha Gutti 《Journal of biomolecular structure & dynamics》2013,31(10):2133-2144
Wnt signaling pathway plays a key role in a wide array of development and physiological processes. Wnt proteins interact with two different co-receptors LRP5/6 and ROR 2, leading to different signal transductions in the cell. Though the Wnt family of proteins has high sequence similarity the specificity for particular co-receptor is not well understood. The choice of pathway is attributed to the binding of Wnt complex to the co-receptor. Our current study is a novel approach using homology modeling, docking, and structural alignment to unravel the structural differences between Wnt3a and Wnt5b binding to LRP6. The conservation of a protruding loop has been identified in Wnt3a protein indicating an enhanced ability of Wnt3a to bind to LRP5/6 against its counter parts. The docking studies have further substantiated the findings. This could potentially help us design and develop novel inhibitors targeting Wnt3a-LRP6 complex in specific tissues or disease states. 相似文献
10.
Low-density lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) are co-receptors of Wnt ligands and play important roles in Wnt/β-catenin signal transduction. Mice homozygous for a germline deletion of Lrp6 die at birth with several associated defects, while Lrp5-deficient mice are viable. Here, we conditionally deleted Lrp5 and/or Lrp6 in the mouse gut ((gut-/-)) by crossing mice carrying floxed alleles of Lrp5 and Lrp6 to a strain expressing Cre recombinase from the villin promoter (villin-Cre). The changes in morphology, differentiation, and Wnt signal transduction were validated using immunohistochemistry and other staining. Consistent with observations in mice carrying a homozygous germline deletion in Lrp5, intestinal development in Lrp5(gut-/-) mice was normal. In addition, mice homozygous for villin-Cre-induced deletion of Lrp6 (Lrp6(gut-/-)) were viable with apparently normal intestinal differentiation and function. However, mice homozygous for villin-Cre inactivated alleles of both genes (Lrp5(gut-/-) ; Lrp6(gut-/-)) died within 1 day of birth. Analysis of embryonic Lrp5(gut-/-); Lrp6(gut-/-) intestinal epithelium showed a progressive loss of cells, an absence of proliferation, and a premature differentiation of crypt stem/precursor cells; no notable change in differentiation was observed in the embryos lacking either gene alone. Further immunohistochemical studies showed that expression of the Wnt/β-catenin target, cyclin D1, was specifically reduced in the intestinal epithelium of Lrp5(gut-/-); Lrp6(gut-/-) embryos. Our data demonstrate that Lrp5 and Lrp6 play redundant roles in intestinal epithelium development, and that Lrp5/6 might regulate intestinal stem/precursor cell maintenance by regulating Wnt/β-catenin signaling. 相似文献
11.
Moriyama A Kii I Sunabori T Kurihara S Takayama I Shimazaki M Tanabe H Oginuma M Fukayama M Matsuzaki Y Saga Y Kudo A 《Genesis (New York, N.Y. : 2000)》2007,45(2):90-100
In the past decades, the function of the Wnt canonical pathway during embryogenesis has been intensively investigated; however, little survey of neonatal and adult tissues has been made, and the role of this pathway remains largely unknown. To investigate its role in mature tissues, we generated two new reporter transgenic mouse lines, ins-TOPEGFP and ins-TOPGAL, that drive EGFP and beta-galactosidase expression under TCF/beta-catenin, respectively. To obtain the accurate expression pattern, we flanked these transgenes with the HS4 insulator to reduce chromosomal positional effects. Analysis of embryos showed that the reporter genes were activated in regions where canonical Wnt activity has been implicated. Furthermore, their expression patterns were consistent in both lines, indicating the accuracy of the reporter signal. In the neonatal brain, the reporter signal was detected in the mesencephalon and hippocampus. In the adult mice, the reporter signal was found in the mature pericenteral hepatocytes in the normal liver. Furthermore, during inflammation the number of T cells expressing the reporter gene increased in the adult spleen. Thus, in this research, we identified two organs, i.e., the liver and spleen, as novel organs in which the Wnt canonical signal is in motion in the adult. These transgenic lines will provide us broader opportunities to investigate the function of the Wnt canonical pathway in vivo. 相似文献
12.
13.
Nuclear localization of β-catenin is integral to its role in Wnt signaling and cancer. Cellular stimulation by Wnt or lithium chloride (LiCl) inactivates glycogen synthase kinase-3β (GSK-3β), causing nuclear accumulation of β-catenin and transactivation of genes that transform cells. β-catenin is a shuttling protein; however, the mechanism by which GSK-3β regulates β-catenin nuclear dynamics is poorly understood. Here, fluorescence recovery after photobleaching assays were used to measure the β-catenin-green fluorescent protein dynamics in NIH 3T3 cells before and after GSK-3β inhibition. We show for the first time that LiCl and Wnt3a cause a specific increase in β-catenin nuclear retention in live cells and in fixed cells after detergent extraction. Moreover, LiCl reduced the rate of nuclear export but did not affect import, hence biasing β-catenin transport toward the nucleus. Interestingly, the S45A mutation, which blocks β-catenin phosphorylation by GSK-3β, did not alter nuclear retention or transport, implying that GSK-3β acts through an independent regulator. We compared five nuclear binding partners and identified LEF-1 as the key mediator of Wnt3a and LiCl-induced nuclear retention of β-catenin. Thus, Wnt stimulation triggered a LEF-1 positive feedback loop to enhance the nuclear chromatin-retained pool of β-catenin by 100-300%. These findings shed new light on regulation of β-catenin nuclear dynamics. 相似文献
14.
15.
16.
17.
18.
Wnt, stem cells and cancer in the intestine 总被引:16,自引:0,他引:16
Pinto D Clevers H 《Biology of the cell / under the auspices of the European Cell Biology Organization》2005,97(3):185-196
The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or isolated, data over the past decade have strongly implicated the Wnt/beta-catenin signalling pathway in their maintenance and progression to cancer. This review will (i) describe the distinctive features of the intestinal epithelium in relation to stem-cell function, (ii) illustrate the major genetic alterations that can lead to cancer, and (iii) show how Wnt/beta-catenin signalling controls homoeostasis in this tissue. 相似文献
19.
20.
Suzuki A Ozono K Kubota T Kondou H Tachikawa K Michigami T 《Journal of cellular biochemistry》2008,104(1):304-317
Although the intermittent administration of PTH is known to stimulate the bone formation, the underlying mechanisms are not fully understood. Here we investigated the crosstalk between PTH/cAMP signaling and canonical Wnt signaling using the human osteoblastic cell line Saos-2. Treatment with PTH or forskolin, an activator of adenylate cyclase, facilitated T-cell factor (TCF)-dependent transactivation in a dose-dependent manner, which was abolished by pre-treatment with a PKA inhibitor, H89. Wnt3a and forskolin synergistically increased the TCF-dependent transactivation. Interestingly, intermittent treatment with PTH enhanced the TCF-dependent transactivation more profoundly than continuous treatment. In addition to the effects on TCF-dependent reporter activity, treatment with PTH or forskolin resulted in the increased expression of endogenous targets of Wnts, Wnt-induced secreted protein 2 (WISP2) and naked cuticle 2 (NKD2). We then investigated the convergence point of PTH/cAMP signaling and the canonical Wnt pathway. Western blotting demonstrated that GSK-3beta was rapidly phosphorylated at Ser(9) on treatment with PTH or forskolin, leading to its inactivation. Moreover, overexpression of a constitutively active mutant of GSK-3beta abolished the TCF-dependent transactivation induced by forskolin. On the other hand, overexpression of the Wnt antagonist Dickkopf-1 (DKK1) failed to cancel the effects of forskolin on the canonical Wnt pathway. Interestingly, treatment with Wnt3a markedly reduced the forskolin-induced expression of receptor activator of NF-kappaB ligand (RANKL), a target gene of PTH/cAMP/PKA. These results suggest that cAMP/PKA signaling activates the canonical Wnt pathway through the inactivation of GSK-3beta, whereas Wnt signaling might inhibit bone resorption through a negative impact on RANKL expression in osteoblasts. 相似文献