首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary dynamics of Ralstonia solanacearum   总被引:2,自引:0,他引:2  
We investigated the genetic diversity, extent of recombination, natural selection, and population divergence of Ralstonia solanacearum samples obtained from sources worldwide. This plant pathogen causes bacterial wilt in many crops and constitutes a serious threat to agricultural production due to its very wide host range and aggressiveness. Five housekeeping genes, dispersed around the chromosome, and three virulence-related genes, located on the megaplasmid, were sequenced from 58 strains belonging to the four major phylogenetic clusters (phylotypes). Whereas genetic variation is high and consistent for all housekeeping loci studied, virulence-related gene sequences are more diverse. Phylogenetic and statistical analyses suggest that this organism is a highly diverse bacterial species containing four major, deeply separated evolutionary lineages (phylotypes I to IV) and a weaker subdivision of phylotype II into two subgroups. Analysis of molecular variations showed that the geographic isolation and spatial distance have been the significant determinants of genetic variation between phylotypes. R. solanacearum displays high clonality for housekeeping genes in all phylotypes (except phylotype III) and significant levels of recombination for the virulence-related egl and hrpB genes, which are limited mainly to phylotype strains III and IV. Finally, genes essential for species survival are under purifying selection, and those directly involved in pathogenesis might be under diversifying selection.  相似文献   

2.
We used multilocus sequence analysis (MLSA) on a worldwide collection of the plant pathogenic Ralstonia solanacearum (Betaproteobacteria) to retrace its complex evolutionary history. Using genetic imprints left during R. solanacearum evolution, we were able to delineate distinct evolutionary complex displaying contrasting dynamics. Among the phylotypes already described (I, IIA, IIB, III, IV), eight groups of strains with distinct evolutionary patterns, named clades, were identified. From our recombination analysis, we identified 21 recombination events that occurred within and across these lineages. Although appearing the most divergent and ancestral phylotype, phylotype IV was inferred as a gene donor for the majority of the recombination events that we detected. Whereas this phylotype apparently fuelled the species diversity, ongoing diversification was mainly detected within phylotype I, IIA and III. These three groups presented a recent expanding population structure, a high level of homologous recombination and evidences of long-distance migrations. Factors such as adaptation to a specific host or intense trading of infected crops may have promoted this diversification. Whether R. solanacearum lineages will eventually evolve in distinct species remains an open question. The intensification of cropping and increase of geographical dispersion may favour situations of phylotype sympatry and promote higher exchange of key factors for host adaptation from their common genetic pool.  相似文献   

3.
Ralstonia solanacearum is a well-known phytopathogen causing bacterial wilt in a large number of agriculturally important crops. The pathogenicity of R. solanacearum is expressed due to the presence of various virulence factors and effector proteins. In this study, various virulence factors and type III effector proteins of R. solanacearum that are present in the strains Rs-09-161 and Rs-10-244 were identified through bioinformatics approach and compared with other reference strains. R. solanacearum strains, Rs-09-161 and Rs-10-244 belong to the phylotype I, biovar3, and are the only sequenced strains from India infecting solanaceous vegetables. Similarity matrix obtained by comparing the sequences of virulence genes of Rs-09-161 and Rs-10-244 with other reference strains indicated that Rs-09-161 and Rs-10-244 share more than 99% similarity between them and are closely related to GMI1000. The virulence factors in R. solanacearum appear to be highly conserved in the R. solanacearum species complex. Rs-09-161 has 72 type III effectors whereas Rs-10-244 has 77. Comparison of the complete genes of type III effectors of Rs-09-161, Rs-10-244 and GMI1000 revealed the presence of 60 common effectors within them. Further, Rs-09-161 has two unique effectors and Rs-10-244 has four unique effectors. Phylogenetic trees of RipA, RipG, RipH and RipS effector sequences resulted in the grouping of the isolates based on their phylotypes. Group 1 consists of strains that belong to phylotype I including Rs-09-161 and Rs-10-244. Phylotype III strain CMR15 forms a group closely associated with phylotype I. The strains belonging to phylotypes II and IV have separated to form two different groups.  相似文献   

4.
Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.  相似文献   

5.
We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America.  相似文献   

6.
Bacterial wilt, caused by Ralstonia solanacearum species complex is a key yield‐limiting factor on crops in Guangdong province, China. The genetic diversity of 110 R. solanacearum strains collected from 16 host plants in different areas of Guangdong province was analysed using biovar and phylotype classification schemes. Of 110 strains, fifty‐five strains belong to biovar 3, fifty‐two strains belong to biovar 4, two strains belong to biovar 2 and one strain belonged to biovar 1. Phylotype‐specific multiplex PCR showed that 108 strains belonged to phylotype I (biovars 1, 3, 4) and two strains belonged to phylotype II (biovar 2). The result of phylogenetic relationships analysis based on egl gene sequences demonstrated that 108 strains of phylotype I were grouped into nine previously described sequevars and a new sequevar 57, and two strains of phylotype II were grouped into sequevar 1. Sequevars 15, 34 and 44 widely distributed in Guangdong were predominant sequevars. Sequevar 45 was first reported on potato and pumpkin in China. These results revealed the genetic structure and phylogenetic relationships of R. solanacearum population in Guangdong and will be helpful in bacterial wilt‐resistance breeding.  相似文献   

7.
Olavius crassitunicatus is a small symbiont-bearing worm that occurs at high abundance in oxygen-deficient sediments in the East Pacific Ocean. Using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization, we examined the diversity and phylogeny of bacterial symbionts in two geographically distant O. crassitunicatus populations (separated by 385 km) on the Peru margin (water depth, ~300 m). Five distinct bacterial phylotypes co-occurred in all specimens from both sites: two members of the γ-Proteobacteria (Gamma 1 and 2 symbionts), two members of the δ-Proteobacteria (Delta 1 and 2 symbionts), and one spirochete. A sixth phylotype belonging to the δ-Proteobacteria (Delta 3 symbiont) was found in only one of the two host populations. Three of the O. crassitunicatus bacterial phylotypes are closely related to symbionts of other gutless oligochaete species; the Gamma 1 phylotype is closely related to sulfide-oxidizing symbionts of Olavius algarvensis, Olavius loisae, and Inanidrilus leukodermatus, the Delta 1 phylotype is closely related to sulfate-reducing symbionts of O. algarvensis, and the spirochete is closely related to spirochetal symbionts of O. loisae. In contrast, the Gamma 2 phylotype and the Delta 2 and 3 phylotypes belong to novel lineages that are not related to other bacterial symbionts. Such a phylogenetically diverse yet highly specific and stable association in which multiple bacterial phylotypes coexist within a single host has not been described previously for marine invertebrates.  相似文献   

8.
The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes.  相似文献   

9.
Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations.  相似文献   

10.
The filamentous φRSM phages (φRSM1 and φRSM3) have integration/excision capabilities in the phytopathogenic bacterium Ralstonia solanacearum. In the present study, we further investigated φRSM-like sequences present in the genomes of R. solanacearum strains belonging to the four major evolutionary lineages (phylotypes I–IV). Based on bioinformatics and comparative genomic analyses, we found that φRSM homologs are highly diverse in R. solanacearum complex strains. We detected an open reading frame (ORF)15 located upstream of the gene for φRSM integrase, which exhibited amino acid sequence similarity to phage repressor proteins. ORF15-encoded protein (a putative repressor) was found to encode a 104-residue polypeptide containing a DNA-binding (helix-turn-helix) domain and was expressed in R. solanacearum lysogenic strains. This suggested that φRSM3-ORF15 might be involved in the establishment and maintenance of a lysogenic state, as well as in phage immunity. Comparison of the putative repressor proteins and their binding sites within φRSM-related prophages provides insights into how these regulatory systems of filamentous phages have evolved and diverged in the R. solanacearum complex. In conclusion, φRSM phages represent a unique group of filamentous phages that are equipped with innate integration/excision (ORF14) and regulatory systems (ORF15).  相似文献   

11.
Ralstonia syzygii subsp. indonesiensis (Rsi, former name: Ralstonia solanacearum phylotype IV) PW1001, a causal agent of potato wilt disease, induces hypersensitive response (HR) on its non-host eggplant (Solanum melongena cv. Senryo-nigou). The disaccharide trehalose is involved in abiotic and biotic stress tolerance in many organisms. We found that trehalose is required for eliciting HR on eggplant by plant pathogen Rsi PW1001. In R. solanacearum, it is known that the OtsA/ OtsB pathway is the dominant trehalose synthesis pathway, and otsA and otsB encode trehalose-6-phosphate (T6P) synthase and T6P phosphatase, respectively. We generated otsA and otsB mutant strains and found that these mutant strains reduced the bacterial trehalose concentration and HR induction on eggplant leaves compared to wild-type. Trehalose functions intracellularly in Rsi PW1001 because addition of exogenous trehalose did not affect the HR level and ion leakage. Requirement of trehalose in HR induction is not common in R. solanacearum species complex because mutation of otsA in Ralstonia pseudosolanacearum (former name: Ralstonia solanacearum phylotype I) RS1002 did not affect HR on the leaves of its non-host tobacco and wild eggplant Solanum torvum. Further, we also found that each otsA and otsB mutant had reduced ability to grow in a medium containing NaCl and sucrose, indicating that trehalose also has an important role in osmotic stress tolerance.  相似文献   

12.

Background

In the honeybee Apis mellifera, the bacterial gut community is consistently colonized by eight distinct phylotypes of bacteria. Managed bee colonies are of considerable economic interest and it is therefore important to elucidate the diversity and role of this microbiota in the honeybee. In this study, we have sequenced the genomes of eleven strains of lactobacilli and bifidobacteria isolated from the honey crop of the honeybee A. mellifera.

Results

Single gene phylogenies confirmed that the isolated strains represent the diversity of lactobacilli and bifidobacteria in the gut, as previously identified by 16S rRNA gene sequencing. Core genome phylogenies of the lactobacilli and bifidobacteria further indicated extensive divergence between strains classified as the same phylotype. Phylotype-specific protein families included unique surface proteins. Within phylotypes, we found a remarkably high level of gene content diversity. Carbohydrate metabolism and transport functions contributed up to 45% of the accessory genes, with some genomes having a higher content of genes encoding phosphotransferase systems for the uptake of carbohydrates than any previously sequenced genome. These genes were often located in highly variable genomic segments that also contained genes for enzymes involved in the degradation and modification of sugar residues. Strain-specific gene clusters for the biosynthesis of exopolysaccharides were identified in two phylotypes. The dynamics of these segments contrasted with low recombination frequencies and conserved gene order structures for the core genes. Hits for CRISPR spacers were almost exclusively found within phylotypes, suggesting that the phylotypes are associated with distinct phage populations.

Conclusions

The honeybee gut microbiota has been described as consisting of a modest number of phylotypes; however, the genomes sequenced in the current study demonstrated a very high level of gene content diversity within all three described phylotypes of lactobacilli and bifidobacteria, particularly in terms of metabolic functions and surface structures, where many features were strain-specific. Together, these results indicate niche differentiation within phylotypes, suggesting that the honeybee gut microbiota is more complex than previously thought.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1476-6) contains supplementary material, which is available to authorized users.  相似文献   

13.
This study aimed to evaluate whether the host genetic background impact the ruminal microbial communities of the progeny of sires from three different breeds under different diets. Eighty five bacterial and twenty eight methanogen phylotypes from 49 individuals of diverging sire breed (Angus, ANG; Charolais, CHA; and Hybrid, HYB), fed high energy density (HE) and low energy density (LE) diets were determined and correlated with breed, rumen fermentation and phenotypic variables, using multivariate statistical approaches. When bacterial phylotypes were compared between diets, ANG offspring showed the lowest number of diet-associated phylotypes, whereas CHA and HYB progenies had seventeen and twenty-three diet-associated phylotypes, respectively. For the methanogen phylotypes, there were no sire breed-associated phylotypes; however, seven phylotypes were significantly different among breeds on either diet (P<0.05). Sire breed did not influence the metabolic variables measured when high energy diet was fed. A correlation matrix of all pairwise comparisons among frequencies of bacterial and methanogen phylotypes uncovered their relationships with sire breed. A cluster containing methanogen phylotypes M16 (Methanobrevibacter gottschalkii) and M20 (Methanobrevibacter smithii), and bacterial phylotype B62 (Robinsoniella sp.) in Angus offspring fed low energy diet reflected the metabolic interactions among microbial consortia. The clustering of the phylotype frequencies from the three breeds indicated that phylotypes detected in CHA and HYB progenies are more similar among them, compared to ANG animals. Our results revealed that the frequency of particular microbial phylotypes in the progeny of cattle may be influenced by the sire breed when different diets are fed and ultimately further impact host metabolic functions, such as feed efficiency.  相似文献   

14.
In situ analysis of the 16S rRNA genes from bacterial mats of five hydrothermal springs (36–58°C) in the Uzon caldera (Kamchatka, Russia) was carried out using clone libraries. Eight clone libraries contained 18 dominant phylotypes (over 4–5%). In most clone libraries, the phylotype of the green sulfur bacterium Chlorobaculum sp. was among the dominant ones. The phylotypes of the green nonsulfur bacteria Chloroflexus and Roseiflexus and of purple nonsulfur bacteria Rhodoblastus, Rhodopseudomonas, and Rhodoferax were also among the dominant ones. Cyanobacteria were represented by one dominant phylotype in a single spring. Among nonphototrophic bacteria, the dominant phylotypes belonged to Sulfyrihydrogenibium sp., Geothrix sp., Acidobacterium sp., Meiothermus sp., Thiomonas sp., Thiofaba sp., and Spirochaeta sp. Three phylotypes were not identified at the genus level. Most genera of phototrophic and nonphototrophic organisms corresponding to the phylotypes from Uzon hydrotherms have been previously revealed in the hydrotherms of volcanically active regions of America, Asia, and Europe. These results indicate predominance of bacterial mats carrying out anaerobic photosynthesis in the hydrotherms of the Uzon caldera.  相似文献   

15.
A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein–protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop–pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.

A complex system of genetic interactions leads to reciprocal adaptation between rice and its bacterial pathogen, Xanthomonas oryzae pv. oryzae.  相似文献   

16.
During 2011–2012, 15 bacterial isolates were obtained from wilting banana plants from seven locations in Malaysia. Characterisation of the Malaysian isolates was determined by biovar determination, pathogenicity test, phylotype-specific multiplex PCR (Pmx-PCR) and endoglucanase (egl) gene amplification. Based on the genotype, phenotype and pathogenic characteristics, all isolates were identified as Ralstonia solanacearum. Pmx- and egl-PCRs indicated that all isolates belong to phylotype II of Ralstonia species complex hierarchical classification. The neighbour joining phylogenetic tree of egl sequences also verified the results where the isolates were all clustered into phylotype II, together with the reference sequences strains, UW070 and UW162. Therefore, the results of our study may provide a better understanding on the taxonomy of R. solanacearum species occupying banana plantations in Malaysia. This study is indeed the first report of phylotype II classification of R. solanacearum biovar 1 strains isolated from banana plants in Malaysia.  相似文献   

17.
Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.  相似文献   

18.
To understand the potential for toluene removal under electron acceptor depleted conditions, stable isotope probing (SIP) was applied to a methanogenic toluene degrading culture to identify the microorganisms responsible for toluene assimilation. Both bacterial and archaeal communities were investigated. The approach involved addition of labeled and unlabeled toluene to microcosms, DNA extraction, ultracentrifugation, and analysis of the generated fractions, as well as the total genomic DNA. Three genes were investigated in the fractions, including the 16S rRNA gene, bssA (encoding for benzylsuccinate synthase α-subunit) and bamA (encoding for 6-oxocylcohex-1-ene-1-carbonyl-CoA hydrolase). Analysis of the total genomic 16S rRNA gene clone library indicated the microbial community was reasonably diverse, containing microorganisms from six phyla (Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria, Deferribacteres, Bacteroidetes). In contrast, only four phylotypes were found in the heavy fraction 16S rRNA gene clone library (from three phyla: Firmicutes, Acidobacteria, Actinobacteria). When these data were correlated with the TRFLP fragments enriched in the heavy fractions, three phylotypes were identified. Specifically, a Desulfosporosinus phylotype was highly enriched in the heavy fractions and was therefore the key consumer of the labeled carbon from toluene. Two other phylotypes, Peptostreptococcaceae and Pseudonocardia were presumed to consume daughter products and produce methane precursors, which in turn were likely utilized by Methanomicrobia to produce methane. Further, the SIP results suggested that the enzymes encoding by functional genes (bssA and bamA) were likely to be harbored by the Desulfosporosinus phylotype.  相似文献   

19.
Shipworms (wood-boring bivalves of the family Teredinidae) harbor in their gills intracellular bacterial symbionts thought to produce enzymes that enable the host to consume cellulose as its primary carbon source. Recently, it was demonstrated that multiple genetically distinct symbiont populations coexist within one shipworm species, Lyrodus pedicellatus. Here we explore the extent to which symbiont communities vary among individuals of this species by quantitatively examining the diversity, abundance, and pattern of occurrence of symbiont ribotypes (unique 16S rRNA sequence types) among specimens drawn from a single laboratory-reared population. A total of 18 ribotypes were identified in two clone libraries generated from gill tissue of (i) a single specimen and (ii) four pooled specimens. Phylogenetic analysis assigned all of the ribotypes to a unique clade within the γ subgroup of proteobacteria which contained at least five well-supported internal clades (phylotypes). By competitive quantitative PCR and constant denaturant capillary electrophoresis, we estimated the number and abundance of symbiont phylotypes in gill samples of 13 individual shipworm specimens. Phylotype composition varied greatly; however, in all specimens the numerically dominant symbiont belonged to one of two nearly mutually exclusive phylotypes, each of which was detected with similar frequencies among specimens. A third phylotype, containing the culturable symbiont Teredinibacter turnerae, was identified in nearly all specimens, and two additional phylotypes were observed more sporadically. Such extensive variation in ribotype and phylotype composition among host specimens adds to a growing body of evidence that microbial endosymbiont populations may be both complex and dynamic and suggests that such genetic variation should be evaluated with regard to physiological and ecological differentiation.  相似文献   

20.
Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F6 population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号