首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The identification of differential gene expressionbetween cells is a frequent goal in modern biological research. Here we demonstrate the coupling of representational difference analysis (RDA) of cDNA with microarray analysis of the output for high throughput screening. Two primary Ewing's sarcoma tissue samples with different biological behavior in vivo were compared by RDA: one which was metastatic and progressed rapidly; the other localized and successfully treated. A modified RDA protocol that minimizes the necessary starting material was employed. After a reduced number of subtractive rounds, the output of RDA was shotgun cloned into a plasmid vector. Inserts from individual colonies from the subtracted library were amplified with vector-specific primers and arrayed at high density on glass slides. The arrays were then hybridized with differentially fluorescently labeled starting amplicons from the two tissues and fluorescent signals were measured at each DNA spot. We show that the relative amounts of fluorescent signal correlate well with the abundance of fragments in the RDA amplicon and in the starting mRNA. In our system, we analyzed 192 products and 173 (90%) were appropriately detected as being >2-fold differentially expressed. Fifty unique, differentially expressed clones were identified. Therefore, the use of RDA essentially provides an enriched library of differentially expressed genes, while analysis of this library with microarrays allows rapid and reproducible screening of thousands of DNA molecules simultaneously. The coupling of these two techniques in this system resulted in a large pool of differentially expressed genes.  相似文献   

3.
4.
A novel method for identification of differentially expressed genes has been developed. It is based on the consecutive restriction digestions of 3' terminal cDNA fragments to produce a fingerprint of gene expression. cDNA molecules are synthesized using a biotinylated oligo(dT) primer, digested with a frequently cutting restriction endonuclease and the 3'-terminal restriction fragments are isolated using streptavidin microbeads. After amplification by PCR, cDNA fragments are immobilized again on streptavidin beads, radiolabeled and treated sequentially with a set of restriction endonucleases. The products of individual enzymatic reactions from two or more different RNA populations are resolved by polyacrylamide gel electrophoresis and compared to reveal differentially expressed genes. This strategy enabled us to identify and clone the fragments of five genes expressed differentially in murine thymus and spleen. One of the genes was found to encode terminal deoxynucleotidyl transferase; others are apparently previously unknown genes.  相似文献   

5.
6.
开放的差异基因表达技术研究进展   总被引:6,自引:2,他引:4  
自 90年代早期发展以来 ,差异基因表达 (DGE)技术在许多领域得到了应用 .“开放”结构系统的DGE技术不需原始的生物学或序列信息 ,而且可应用于任何种群 .主要介绍 6项开放的DGE技术 :cDNA代表性差示分析 (cDNA RDA)、基因表达系统分析 (SAGE)、表达序列标签串联排列连接(TALEST) ,和早期的DGE技术差异显示 (DD)、随机引物聚合酶链反应 (AP PCR) ,以及一项受专利保护的技术———GeneCalling .通过几项重要的参数对这些技术进行了比较 ,认为DD虽然有其致命的弱点 ,但在目前仍然应用得非常广泛 .cDNA RDA能有效富增特异片段 ,扣除共有序列 ,如能和SAGE结合 ,将能进一步促进其发展 .TALEST和GeneCalling操作较简便 ,一次试验能获得大量的数据 ,但是分析这些数据比较麻烦 ,须借助另外的分析软件 .最后介绍了应用DGE技术取得的最新成果 .  相似文献   

7.
8.
mRNA differential display RT-PCR has been extensively used for the isolation of genes differentially expressed between RNA populations. We have assessed its utility for the identification of developmentally regulated genes in plasmid cDNA libraries derived from individual tissues dissected from early mouse embryos. Using plasmid Southern blot hybridisation as a secondary screen, we are able to identify such genes and show by whole-mount in situ hybridisation that their expression pattern is that expected from the differential display profile.  相似文献   

9.
10.
Recently, we showed that transfection of GD3 synthase cDNA into Neuro2a cells, a mouse neuroblastoma cell line, causes cell differentiation with neurite sprouting. In a search for the genes involved in this ganglioside-induced Neuro2a differentiation, we used a tetracycline-regulated GD3 synthase cDNA expression system combined with differential display PCRs to identify mRNAs that were differentially expressed at four representative time points during the process. We report here the identification of 10 mRNAs that are expressed highly at the Neuro2a differentiated stage. These cDNAs were named GDAP1-GDAP10 for (ganglioside-induced differentiation-associated protein) cDNAs. It is interesting that in retinoic acid-induced neural differentiated mouse embryonic carcinoma P19 cells, GDAP mRNA expression levels were also up-regulated (except that of GDAP3), ranging from three to >10 times compared with nondifferentiated P19 cells. All the GDAP genes (except that of GDAP3) were developmentally regulated. The GDAP1, 2, 6, 8, and 10 mRNAs were expressed highly in the adult mouse brain, whereas all the other GDAP mRNAs were expressed in most tissues. Our results suggested that these GDAP genes might be involved in the signal transduction pathway that is triggered through the expression of a single sialyltransferase gene to induce neurite-like differentiation of Neuro2a cells.  相似文献   

11.
12.
13.
M T Beck  L Holle  W Y Chen 《BioTechniques》2001,31(4):782-4, 786
PCR subtraction hybridization has been used effectively to enrich and single out differentially expressed genes. However identification of these genes by means of cloning and sequencing individual cDNAs is a tedious and lengthy process. In this report, an attempt has been made to combine the use of PCR select cDNA subtraction hybridization and cDNA microarrays to identify differentially expressed genes using a nonradioactive chemiluminescent detection method. mRNA from human prolactin (hPRL) or human prolactin antagonist (hPRL-G129R) treated and non-treated breast cancer cells was isolated, and cDNAs were synthesized and used for the PCR subtraction to enrich the differentially expressed genes in the treated cells. The PCR-amplified and subtracted cDNA pools were purified and labeled using the digoxigenin method. Labeled cDNAs were hybridized to a human apoptosis cDNA microarray membrane and identified by chemiluminescence. The results suggest that the strategy of combining all three methods will allow for a more efficient, nonradioactive way of identifying differentially expressed genes in target cells.  相似文献   

14.
15.
In this study, we have applied and evaluated a modified cDNA representational difference analysis (RDA) protocol based on magnetic bead technology to study the molecular effects of a candidate drug (N,N'-diacetyl-L-cystine, DiNAC) in a model for atherosclerosis. Alterations in a gene expression profile induced by DiNAC were investigated in a human monocytic cell line (THP-1) differentiated into macrophage-like cells by lipopolysaccharide and further exposed to DiNAC. Three rounds of subtraction have been performed and the difference products from the second and third rounds have been characterized in detail by analysis of over 1000 gene sequences. Two protocols for analysis of the subtraction products have been evaluated, a shotgun approach and size selection of both distinct fragments and band-patterned smear. We demonstrate that in order to obtain a representative view of the most abundant gene fragments, the shotgun procedure is preferred. The obtained sequences were analyzed against the UniGene and Expressed Gene Anatomy Database (EGAD) databases and the results were visualized and analyzed with the ExProView software enabling rapid pair-wise comparison and identification of individual genes or functional groups of genes with altered expression levels. The identified differentially expressed gene sequences were comprised of both genes with known involvement in atherosclerosis or cholesterol biosynthesis and genes previously not implicated in these processes. The applicability of a solid-phase shotgun RDA protocol, combined with virtual chip monitoring, results in new starting points for characterization of novel candidate drugs.  相似文献   

16.
17.
18.
19.
20.
Detection of differentially regulated genes has been severely hampered by technical limitations. In an effort to overcome these problems, the PCR-coupled subtractive process of representational difference analysis (RDA) [Lisitsyn, N. et al. (1993) Science 259, 946-951] has been adapted for use with cDNA. In a model system, RAG-1 and RAG-2, the genes responsible for activating V(D)J recombination, were identified in a genomic transfectant by cDNA RDA in a small fraction of the time taken by conventional means. The system was also modified to eliminate expected difference products to facilitate the identification of novel genes. Additional alterations to the conditions allowed isolation of differentially expressed fragments. Several caffeine up-regulated clones were obtained from the pre-B cell line 1-8, including IGF-1B, and a predicted homologue of the natural killer cell antigen, NKR-P1. The approach was found to be fast, extremely sensitive, reproducible, and predominantly lacked false positives. cDNA RDA has the capacity and adaptability to be applied to a wide range of biological problems, including the study of single gene disorders, characterization of mutant and complemented cell types, developmental or post-event expression time courses, and examination of pathogen-host interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号