首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect‐responsive genes after challenge with caterpillars, suggesting that egg‐derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA‐deficient mutant sid2‐1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross‐talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg‐induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.  相似文献   

2.
3.
Induced systemic resistance (ISR) of plants against pathogens is a widespread phenomenon that has been intensively investigated with respect to the underlying signalling pathways as well as to its potential use in plant protection. Elicited by a local infection, plants respond with a salicylic-dependent signalling cascade that leads to the systemic expression of a broad spectrum and long-lasting disease resistance that is efficient against fungi, bacteria and viruses. Changes in cell wall composition, de novo production of pathogenesis-related-proteins such as chitinases and glucanases, and synthesis of phytoalexins are associated with resistance, although further defensive compounds are likely to exist but remain to be identified. In this Botanical Briefing we focus on interactions between ISR and induced resistance against herbivores that is mediated by jasmonic acid as a central signalling molecule. While many studies report cross-resistance, others have found trade-offs, i.e. inhibition of one resistance pathway by the other. Here we propose a framework that explains many of the thus far contradictory results. We regard elicitation separately from signalling and from production, i.e. the synthesis of defensive compounds. Interactions on all three levels can act independently from each other.  相似文献   

4.
5.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

6.
Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress‐related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore‐induced volatile priming cues with complementary information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile‐exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile‐exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual‐exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.  相似文献   

7.
茉莉酸及其甲酯在植物诱导抗病性中的作用   总被引:11,自引:0,他引:11  
茉莉酸类物质被认为是植物抗病防卫反应的内源及中间信号分子。本文介绍了茉莉酸及其甲酯在植物抗病性中的作用,从它们在体内激活的代谢途径及相关基因表达探讨有关作用机制以及有可能在农业上应用的前景。  相似文献   

8.
微生物诱导的植物系统抗性   总被引:2,自引:0,他引:2  
陈峰 《工业微生物》2007,37(5):51-53
综述了由植物病原菌和非病原性的根际促生菌诱导产生的两种植物系统抗性:系统获得性抗性(SAR)和系统诱导抗性(ISR),比较了两类系统抗性的诱导、信号分子和机理的异同点,阐述了信号分子水杨酸在系统获得性抗性诱导过程中的作用及茉莉酸和乙烯在系统诱导抗性产生过程中的作用。  相似文献   

9.
We used tomato genotypes deficient in the jasmonic acid (JA) pathway to study the interaction between the production of herbivore‐induced plant volatiles (HIPVs) that serve as information cues for herbivores as well as natural enemies of herbivores, and the production of foliar trichomes as defence barriers. We found that jasmonic acid‐insensitive1 (jai1) mutant plants with both reduced HIPVs and trichome production received higher oviposition of adult leafminers, which were more likely to be parasitized by the leafminer parasitoids than JA biosynthesis spr2 mutant plants deficient in HIPVs but not trichomes. We also showed that the preference and acceptance of leafminers and parasitoids to trichome‐removed plants from either spr2 or wild‐type (WT) genotypes over trichome‐intact genotypes can be ascribed to the reduced trichomes on treated plants, but not to altered direct and indirect defence traits such as JA, proteinase inhibitor (PI)‐II and HIPVs levels. Although the HIPVs of WT plants were more attractive to adult insects, the insects preferred trichome‐free jai1 plants for oviposition and also had greater reproductive success on these plants. Our results provide strong evidence that antagonism between HIPV emission and trichome production affects tritrophic interactions. The interactions among defence traits are discussed.  相似文献   

10.
11.
In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell‐free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol–plant–pathogen interaction system. Two‐week‐old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell‐free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata‐Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS‐ and CF‐induced resistance was evaluated using JA‐ and SA‐impaired tomato lines. We observed that JA‐deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild‐type (WT) BGS‐treated tomato plants showed a higher JA level and significantly lower disease incidence. SA‐deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF‐treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA‐responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA‐inducible pathogenesis‐related protein 1 acidic (PR1a) gene was up‐regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato.  相似文献   

12.
茉莉酸在植物诱导防御中的作用   总被引:26,自引:2,他引:26  
徐伟  严善春 《生态学报》2005,25(8):2074-2082
茉莉酸(JA)和茉莉酸甲酯(MeJA)作为与损伤相关的植物激素和信号分子,广泛地存在于植物体中,外源应用能够激发防御植物基因的表达,诱导植物的化学防御,产生与机械损伤和昆虫取食相似的效果。大量研究表明,用茉莉酸类化合物处理植物可系统诱导蛋白酶抑制剂(PI)和多酚氧化酶(PPO),从而影响植食动物对营养物质的吸收,还能增加过氧化物酶、壳聚糖酶和脂氧合酶等防御蛋白的活性水平,导致生物碱和酚酸类次生物质的积累,增加并改变挥发性信号化合物的释放,甚至形成防御结构,如毛状体和树脂导管。经茉莉酸处理的植物提高了植食动物的死亡率,变得更加吸引捕食性和寄生性天敌。挥发性化合物——茉莉酸甲酯可以从植物的气孔进入植物体内,在细胞质中被酯酶水解为茉莉酸,实现长距离的信号传导和植物间的交流,诱导邻近植物产生诱导防御反应。茉莉酸和茉莉酸甲酯分别具有4种立体异构,其中具有活性的是顺式结构,但顺式结构不稳定,会差向异构化为反式结构。茉莉酸的代谢物(Z)-茉莉酮(cis-Jasmone)具电生理活性,在植物诱导防御中起作用,并且在防御信号的作用上不同于茉莉酸和茉莉酸甲酯。  相似文献   

13.
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management.  相似文献   

14.
Abstract 1. The herbaceous plant Solanum carolinense (L.) (Solanaceae) is host to a number of specialist insects, including the leaf-feeding beetles Epitrix fuscula (Crotch) and Leptinotarsa juncta (Germar) (Coleoptera: Chrysomelidae). Potted individuals of S. carolinense were subjected to one of two treatments: exposure to herbivory by E. fuscula or exclusion of all herbivores. The effects of E. fuscula herbivory on larval performance and oviposition preference of L. juncta were investigated.
2. Although the masses of the L. juncta pupae did not differ between the two treatments, larvae feeding on damaged plants developed more slowly than those feeding on undamaged plants.
3. In both paired leaf choice trials and whole plant choice trials, larvae of L. juncta showed no preference for undamaged versus damaged hosts.
4. In a field transplant experiment, adult L. juncta females showed slight feeding preferences and strong oviposition preferences for undamaged plants versus plants that had been fed on by E. fuscula .
5. The results are discussed with reference to their implications for plant-mediated competition among herbivores and constraints on the evolution of plant resistance.  相似文献   

15.
Tomato plants release volatile organic compounds (VOCs) following insect or mechanical damage. In this study, the constitutive and wound-induced emission levels of VOCs in suppressor of prosystemin-mediated responses2 (spr2) mutant plants, compromised in linolenic acid (LA) and jasmonic acid (JA) synthesis, and in 35S::prosystemin (35S::prosys) plants, having upregulated direct defence responses, were compared. The spr2 mutants produced constitutively lower levels of VOCs, which were nonetheless increased in response to (a)biotic damage, although at lower levels than wild-type (Wt) and 35S::prosys plants. No significant differences in VOC emissions were detected between the latter two genotypes, thereby suggesting that systemin does not regulate indirect defence responses, whereas differences in fatty acid composition in spr2 plants led to the predominant emission of saturated C6 volatiles in response to wounding. The expression of 1-deoxy-D-xylulose 5-phosphate synthase (DXS2), a key gene involved in VOC synthesis in the chloroplast, was only upregulated in Manduca sexta L.-damaged Wt and 35S::prosys plants. However, its expression was restored in spr2 plants by exogenous LA or JA, suggesting that abated VOC emissions in spr2 plants are correlated with lowered DXS2 expression. Bioassays with two different insects showed that adult females significantly preferred spr2 plants, indicating that lowered levels of VOCs in tomato influence plant selection by insects during oviposition.  相似文献   

16.
Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies.Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored.Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent.Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence.  相似文献   

17.
Plants produce a broad variety of defensive metabolites to protect themselves against herbivorous insects. Although polyamines have been implicated in various responses to abiotic and biotic stress, there have been no studies focused on amines in response to insect herbivory. By screening for bioactive amines, we identified isopentylamine as a novel type of herbivory‐induced compound in rice leaves, which was derived from the amino acid leucine in stable isotope labelling experiments. Accumulation of isopentylamine increased during herbivory by the brown planthopper (Nilaparvata lugens, BPH) and the rice‐feeding armyworm (Mythimna loreyi), as well as in response to treatment with the plant hormone, jasmonic acid. Likewise, isopentylamine accumulation was compromised in rice jasmonate biosynthesis mutants, hebiba and Osjar1. In bio‐assays, BPH insects feeding on rice seedlings submerged in 50 mg/L isopentylamine solution had a higher mortality compared with BPH feeding on seedlings submerged in water. Notably, the rice leaves submerged in 50 mg/L solution showed the endogenous concentrations of isopentylamine similar to that induced by BPHs. These results suggest that isopentylamine functions as a new type of plant defence metabolite that is rapidly induced by herbivore attack and deters insect herbivores in rice.  相似文献   

18.
Plants are nutritious and hence herbivores and phytopathogens have specialized to attack and consume them. In turn, plants have evolved adaptations to detect and withstand these attacks. Such adaptations we call ‘defenses’ and they can operate either directly between the plant and the plant consumer or indirectly i.e. when taking effect via other organisms such as predators and parasitoids of herbivores. Plant defenses put selection pressure on plant-consumers and, as a result, herbivores and pathogens have evolved counter-adaptations to avoid, resist, or manipulate plant defenses. Here we review how plant consumers have adapted to cope with plant defenses and we will put special emphasis on the phenomenon of suppression of plant defenses.  相似文献   

19.
丛枝菌根真菌的定殖可以提高寄主植物的抗病性,但机制并不十分清楚。利用番茄茉莉酸信号转导途径前系统素过表达材料35S::PS、茉莉酸合成突变体spr2、茉莉酸信号识别突变体jai1及其野生型CM 4个不同基因型材料,分别在根系接种丛枝菌根真菌摩西斗管囊霉(Funneliformis mosseae, Fm),待菌根形成后,在叶片外源喷施10 mL 0.5μmol/L茉莉酸甲酯(MeJA)和接种番茄早疫病病原菌(Alternaria solani, As),比较不同基因型抗病防御反应以及对早疫病抗性的差异。结果表明:预先接种菌根真菌的CM和35S::PS番茄,在叶片接种病菌5 d和10 d后,其叶片中过氧化物酶(POD)、多酚氧化酶(PPO)和脂氧合酶(LOX)活性以及丙二烯氧化物环化酶基因(AOC)和茉莉酸信号受体基因(COI1)的转录水平显著高于只接种早疫病菌的处理、只接种菌根菌的处理以及未进行任何处理的健康植株,其早疫病发病率和病情指数也显著降低;外源喷施MeJA可增强预先接种菌根菌的CM和35S::PS番茄植抵抗早疫病的能力。与此同时,对预先接种菌根菌的spr2番茄外源喷施MeJA...  相似文献   

20.
刘芳  娄永根  程家安 《昆虫知识》2003,40(6):481-486
综述了植物、植食性昆虫及其天敌相互作用的进化过程。虫害诱导的植物挥发物的特征和功能是植物-植食性昆虫-天敌之间长期进化的结果。在植物、植食性昆虫与天敌相互作用的进化过程中,3个不同营养级,包括植物、植食性昆虫和天敌有着各自的调节和利用虫害诱导的植物挥发物的策略。但有一些问题,如通过实验研究得出的诱导防御在田间是否真正能起到保护作用等需进一步研究、阐明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号