首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method is presented for the determination of thiabendazole and 5-hydroxythiabendazole in animal tissues. Samples are homogenised in buffer at pH=7.0, extracted with ethyl acetate and cleaned up using CN solid-phase extraction columns. Thiabendazole and 5-hydroxythiabendazole are separated chromatographically using gradient elution and analysed by liquid chromatography–mass spectrometry. Deuterated thiabendazole is employed as an internal standard for thiabendazole determination; 5-hydroxythiabendazole is quantified via external standards. Samples are screened by monitoring the protonated molecular ions at m/z=202 for thiabendazole, 206 for deuterated thiabendazole and 218 for 5-hydroxythiabendazole using thermospray LC–MS. Positives are confirmed by multiple ion monitoring using APCI LC–MS. Validation of the method was carried out at 50, 100 and 200 μg kg−1. Recoveries for thiabendazole in bovine muscle, liver and kidney ranged from 96–103% with C.V.s between 0.7 and 4.8% and for 5-hydroxythiabendazole recoveries ranged from 70–85% with C.V.s between 3.1 and 11.5%.  相似文献   

2.
We describe here a simple, precise, and highly sensitive method for the simultaneous determination of methamphetamine (MA) and amphetamine (AM) in urine using a high performance liquid chromatography (HPLC) column-switching method. A PK-2A (Shodex) column was used for extraction and deproteinization, and a CAPCELL PAK SCX semi-micro, polymer-coated cation-exchange column was employed for separation. The urine sample was mixed with an equal volume of borate buffer (0.1M, pH 9.4), and then 100 microl of the mixture was injected into the HPLC column. The column was switched for 6 min, and then 10 min later detection was performed at 210 nm. Recovery yields of the MA and AM spiked in the urine were 93.0-100.4% with a coefficient of variation of less than 1%. The calibration curves of MA and AM were in the range of 0.1-10 microg/ml with good linearity (r(2)=0.999), with the limit of qualification being 0.005 microg/ml. This method of using HPLC with column-switching can be used for both qualification and quantification of MA and its metabolite, AM, in urine, especially in forensic cases.  相似文献   

3.
It has been suggested that GTS-21 can improve the learning deficits and inhibit the neuro-degeneration in patients with Alzheimer's disease. This paper describes a reversed-phase high-performance liquid chromatographic assay with visible detection at 405 nm for determination of GTS-21 and its metabolite, 4-hydroxy-GTS-21 in rat plasma. The method uses solid-phase extraction with a Bond Elut C18 column. A quantitation limit of 1.0 ng/ml was achieved using 0.5 ml of rat plasma. In the validation study, the coefficients of variation and the relative errors of each compound were less than 10%. Also freeze-thaw and storage stability were confirmed. This method has proved to be applicable to the pharmacokinetic study of GTS-21 in rats.  相似文献   

4.
A sensitive, specific, accurate and reproducible LC-MS-MS method was developed and validated for the simultaneous determination of rivastigmine and its major metabolite NAP 226-90 in human plasma according to International Regulatory Requirements. After addition of their respective labelled internal standards, the compounds were extracted from plasma using methyl-tert.-butyl ether at basic pH with a simultaneous derivatization of NAP 226-90 with propionic anhydride, and backextracted into an acidic solution. After re-extraction the compounds were analyzed on a 3-micrometer Purospher Star RP-18 column interfaced with a MDS Sciex API 3000 triple quadrupole mass spectrometer. Positive atmospheric chemical ionization was employed as the ionization source. The analytes and their internal standards were detected by use of multiple reaction monitoring mode. Intra- and inter-day accuracy and precision were found suitable over the range of concentrations between 0.200 and 30.0 ng/ml. The LC-MS-MS method was crossvalidated with a previously developed in-house GC-MS method by the analysis of plasma samples obtained from patients after administration of Exelon((R)) capsules and showed excellent correlation between the methods.  相似文献   

5.
6.
A simple and sensitive column-switching HPLC method was developed for the simultaneous determination of two furocoumarin compounds, byak-angelicin and oxypeucedanin hydrate, which are the main components of hot water extract of Angelica dahurica root (AE), in rat plasma. Plasma sample was simply deproteinated with perchloric acid. After centrifugation, the supernatant was injected into a column-switching HPLC system consisting of a clean-up column (Symmetry Shield RP 8, 20×3.9 mm I.D.) and analytical column (Symmetry C18, 75×4.6 mm I.D.) which were connected with a six-port switching valve. The flow-rate of the mobile phase (acetonitrile–water, 20:80) was maintained at 1 ml/min. Detection was carried out at wavelength 260 nm with a UV detector. The column temperature was maintained at 40°C. The calibration curves of byak-angelicin and oxypeucedanin hydrate were linear over the ranges 19.6 to 980 ng/ml (r2>0.997). The accuracy of these analytes was less than 4.4%. The intra- and inter-day relative standard deviations of byak-angelicin and oxypeucedanin hydrate were within 12.0% and 12.7%, respectively. The present method was applied for the analysis of plasma concentration from rats after administration of AE.  相似文献   

7.
8.
Gemcitabine (dFdC) is a pyrimidine antimetabolite with broad spectrum activity against tumors. In this paper, a normal-phase high-performance liquid chromatographic method was developed for the determination of the parent drug (dFdC) and its metabolite (dFdU) in human plasma. The described sample preparation procedure for determination of dFdC and dFdU is rapid, sensitive, reproducible and simple. The linear regression equations obtained by least square regression method, were area under the curve=0.0371 concentration (ng ml(-1))+192.53 and 1.05.10(-4) concentration (ng ml(-1))-1.2693 for dFdC and dFdU, respectively. The assay for dFdC and dFdU described in the present report has been applied to plasma samples from a bladder cancer patient.  相似文献   

9.
A high-performance liquid chromatography (HPLC) procedure for the simultaneous determination of quinapril and its active metabolite quinaprilat in human plasma samples is described. A one-step solid-phase extraction (SPE) with C18 cartridges was coupled with a reversed-phase HPLC system. The system requires two mobile phases composed of tetrabutyl ammonium hydrogensulfate (10 mM adjusted to pH 7)-acetonitrile (62:38, v/v) for quinapril, and (25:75, v/v) for quinaprilat elution through a C18 Symmetry column and detection at a wavelength of 215 nm. Calibration curves were linear over the ranges 20 to 1,000 ng/ml for quinaprilat and 10 to 500 for quinapril. The limits of quantification were 20 and 10 ng/ml for quinaprilat and quinapril, respectively. Extraction recoveries were higher than 90% for quinapril and 80% for quinaprilat. This method has been successfully applied to a bioequivalence study of quinapril in healthy subjects.  相似文献   

10.
Oleuropein, the main glycoside present in olives, and hydroxytyrosol, the principal degradation product of oleuropein present in olive oil, have been linked to reduction of coronary heart disease and certain cancers. In the present study a direct and sensitive reversed-phase high-performance liquid chromatographic assay was developed for simultaneous quantification of both oleuropein and hydroxytyrosol. The plasma protein was precipitated with acetonitrile, samples were then centrifuged and supernatants were dried, and reconstituted with water prior to injection. The chromatographic analysis was carried out using a phenyl column and an isocratic elution of acidified water and acetonitrile with fluorescence detection at 281 and 316 nm for excitation and emission, respectively. The calibration curve was linear and limits of quantification were 30 ng/ml and 3 microg/ml for hydroxytyrosol and oleuropein, respectively. The method has been successfully applied to monitor oleuropein and hydroxytyrosol plasma levels in the rat.  相似文献   

11.
12.
A sensitive and selective column-switching semi-microcolumn high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of testosterone and eight of its metabolites (6alpha-, 6beta-, 16alpha-, 16beta-, 7alpha-, 2alpha-, and 2beta-hydroxytestosterone, and androstenedione) in liver microsomes. After incubation for 10 min, testosterone and its metabolites were extracted from the microsomes with ethyl acetate, and the extract was evaporated to dryness. The residue was dissolved in the mobile phase and loaded onto the HPLC system. The analytes were first concentrated in a precolumn and subsequently transferred to the analytical column, where they were separated using linear gradient elution. A UV detector set at 254 nm was used to detect the analytes. This newly developed method clearly separated TES and the metabolites with high resolution and was found to be reproducible with intra- and interday variability of <10.7%. This method has been subsequently used to determine the testosterone hydroxylation activities catalyzed by 15 different recombinant CYP isozymes. The results confirmed the formation of stereoselectively hydroxylated metabolites by each CYP isozyme.  相似文献   

13.
A sensitive and selective high-performance liquid chromatographic method was developed for simultaneous determination of trans-resveratrol-3-O-glucoside (TRG) and its metabolites, trans-resveratrol-3-O-glucuronide (TRN) and trans-resveratrol (TR) in rat plasma. The plasma proteins were precipitated with acetonitrile and supernatant was evaporated to dryness. The analytes and internal standard baicalin were chromatographed on a C(18) column. The mobile phase consisted of 25% acetonitrile and 75% H(2)O adjusted with formic acid to pH 3.5. The flow-rate was 1.0 ml/min and ultraviolet detection was set at 320 nm. Standard curves were linear over the concentration range of 0.04-40 microg/ml for TRG and TRN, and 0.04-10 microg/ml for TR, respectively. The precision, expressed as the intra-day R.S.D. and inter-day R.S.D., was below 9.3% for TRG, TRN and TR. The accuracy, expressed as the relative error (RE) was within +/-7.4% for all analytes. The mean recoveries of TRG, TRN, TR and I.S. were 93.6%, 93.1%, 91.0% and 87.9%, respectively. This method was successfully applied to a pharmacokinetic study of TRG after an oral dose of 150 mg/kg to Wistar rats.  相似文献   

14.
We established a method for precisely determining residual tetracycline antibiotics (TCs) in foods by atmospheric pressure chemical ionization liquid chromatography-tandem mass spectrometry (APCI LC–MS–MS) using selected reaction monitoring with an internal standard. By setting the nebulizer probe temperature to 475°C, we were able to use a mobile phase containing oxalic acid without clogging problems at the APCI interface, since oxalic acid decomposes to carbon dioxide and water at high temperature. DMCTC was very effective as an internal standard for determining TCs in various foods. TCs were cleaned up using a Bond Elut ENV cartridge and analysed by APCI LC–MS–MS. The recovery of TCs from various foods including animal tissues, honey, milk, eggs, and fish fortified at levels of 0.05, 0.10, and 0.50 ppm averaged 60.1–88.9%, with an RSD of 1.2–8.7%. The detection limits were 0.001 ppm for OTC and TC, 0.004 ppm for CTC, and 0.002 ppm for DC. The present method was also successfully used to determine TCs in swine kidney samples that were previously found by microbiological assay.  相似文献   

15.
Etoposide, a highly active and widely used antineoplastic agent, is O-demethylated to its active catechol metabolite. A high-performance liquid chromatographic assay method for the simultaneous quantitation of etoposide and etoposide catechol in human plasma was established. Etoposide and etoposide catechol were extracted from plasma using chloroform and methanol followed by phase separation, evaporation of the organic phase, and reconstitution of the residue. Chromatography was accomplished using a reversed-phase phenyl analytical column (390 mm×3.9 mm I.D.) with a mobile phase of 76.6% 25 mM citric acid–50 mM sodium phosphate (pH 2.4)–23.4% acetonitrile pumped isocratically at 1 ml/min with electrochemical detection. The limit of detection for etoposide was 1.2 nM and for etoposide catechol was 0.2 nM. The precision (CV) for etoposide ranged from 0.7 to 3% and for the catechol metabolite from 1 to 6%; accuracy of predicted values ranged from 97 to 106% and 94 to 103%, respectively. The assay was linear from 0.1 to 10 μM for etoposide and from 0.005 to 0.5 μM for etoposide catechol in plasma. Recovery of etoposide and etoposide catechol ranged from 93 to 95% and 90 to 98%, respectively. Stability of etoposide and etoposide catechol in human plasma containing ascorbic acid stored at −70°C for one year was demonstrated. This assay procedure is suitable for evaluation of etoposide and etoposide catechol pharmacokinetics in plasma following etoposide administration.  相似文献   

16.
ZT-1 is a novel acetylcholinesterase (AChE) inhibitor. It is rapidly transformed to Huperzine A (Hup A) in vitro. A simple and rapid HPLC-UV method for the simultaneous determination of ZT-1 and its metabolite Hup A in plasma is described. The chromatographic separations were achieved on a C(18) ODS column (250 mm x 4.6 mm ID) using methanol-1 mmol/L ammonium acetate (70:30,v/v) as mobile phase. The flow rate was 0.7 mL/min, the detection wavelength was 313 nm and the column temperature was kept at 35 degrees C. Plasma samples were prepared as rapidly as possible and extracted immediately with 5 mL of chloroform:iso-propyl alcohol mixture (v/v, 9:1).The retention times of ZT-1 and Huperzine A (Hup A) were 18.7 and 14.4 min, respectively. The mean absolute recoveries of two analytes were >90%. Quantification limits were all 0.02 nmol/mL for ZT-1 and Hup A. This analytical method was reliable and convenient procedure that meets the criteria for the pharmacokinetic evaluation of ZT-1 on experimental animals.  相似文献   

17.
Terbutaline is a beta-adrenergic receptor antagonist that acts as a bronchodilator in the treatment of asthma and chronic bronchitis. In the present work, a column-switching high-performance liquid chromatographic method was developed to monitor terbutaline sulphate in dog plasma. The system consists of a C2 pre-column (PC) and a C18 analytical column connected in series via a switching valve. Atenolol was used as the internal standard. Good linearity was achieved in the range of 5-800 ng/ml plasma. The mean intra- and inter-assay variation coefficients for this analysis were 2.3 and 4.7%, respectively. The average recovery for terbutaline was 87.4% from plasma. The mean concentration after three freeze-thaw cycles was 99.4% of the normal value. The analytical sensitivity and accuracy of this assay is adequate for characterisation of the pharmacokinetics of oral administration of terbutaline to dogs and has been successfully used to provide pharmacokinetic data using pulsatile and immediate-release tablets.  相似文献   

18.
A highly sensitive and selective high-performance liquid chromatographic assay has been developed for the separation and quantitation of tolmetin and its major metabolite in human biological fluids, viz. plasma, urine and synovial fluid. Analysis of plasma and synovial fluid required only 0.5 ml of the sample. The sample was washed with diethyl ether and extracted with diethyl ether—chloroform (2:1). The extracted compounds were injected onto a reversed-phase column (RP-2) and absorbance was measured at 313 nm. The standard curves in plasma were found to be linear for both tolmetin and the metabolite at concentrations from 0.04 to 10.0 μg/ml. Urine samples (0.5 ml) were diluted (1:1) with methanol containing the internal standard and were directly injected onto the reversed-phase (RP-2) column. Standard curves of tolmetin and metabolite in urine were linear in the range 5–300 μg/ml. Serum and synovial fluid concentrations of tolmetin and its metabolite in patients receiving multiple doses of tolmetin sodium were determined using the assay procedure.  相似文献   

19.
A simple and sensitive high-performance liquid chromatographic method for the simultaneous assay of amiodarone and desethylarniodarone in plasma, urine and tissues has been developed. The method for plasma samples and tissue samples after homogenizing with 50% ethanol, involves deproteinization with acetonitrile containing the internal standard followed by centrifugation and direct injection of the supernatant into the liquid chromatograph. The method for urine specimens includes extraction with a diisopropyl ether—acetonitrile (95:5, v/v) mixture at pH 7.0 using disposable Clin-Elut 1003 columns, followed by evaporation of the eluate, reconstitution of the residue in methanol—acetonitrile (1:2, v/v) mixture and injection into the chromatograph. Separation was obtained using a Radial-Pak C18 column operating in combination with a radial compression separation unit and a methanol–25% ammonia (99.3:0.7, v/v) mobile phase. A wavelength of 242 nm was used to monitor amiodarone, desethylamiodarone and the internal standard. The influence of the ammonia concentration in the mobile phase on the capacity factors of amiodarone, desethylamiodarone and two other potential metabolites, monoiodoamiodarone (L6355) and desiodoamiodarone (L3937) were investigated. Endogenous substances or a variety of drugs concomitantly used in amiodarone therapy did not interfere with the assay.The limit of sensitivity of the assay was 0.025 μg/ml with a precision of ± 17%. The inter- and intra-day coefficient of variation for replicate analyses of spiked plasma samples was less than 6%. This method has been demonstrated to be suitable for pharmacokinetic and metabolism studies of amiodarone in man.  相似文献   

20.
A simple and sensitive column-switching HPLC method has been developed for the simultaneous determination of NK-104 (HMG–CoA reductase inhibitor) and its lactone in human and dog plasma. Plasma sample was extracted with methyl tert-butyl ether and then the extract was subjected to methylation with diazomethane to prevent the mutual conversion between NK-104 and its lactone. The extract was injected into the column-switching HPLC system. The calibration curves of NK-104 and NK-104 lactone were linear over the ranges 0.5 to 100 ng/ml for human plasma samples and 0.5 to 500 ng/ml for dog plasma, respectively. The intra-day and inter-day C.V. values of these analytes were less than 13.3%. The intra-day and inter-day accuracies of these analytes were between −14.0 and 6.5%. The proposed method has been applied to plasma samples obtained after oral administration of a single 2 mg dose of NK-104 to volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号