首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A column-switching HPLC method using an internal-surface phenylboronic acid precolumn for the selective extraction of β-blockers from biological fluids has been developed. Filtered urine and plasma samples (50 μl) were injected onto the precolumn equilibrated with methanol-0.05 M disodium hydrogenphosphate (5:95, v/v). After the precolumn had been washed breifly, the selectively retained β-blockers were eluted with methol-0.05 M phosphate buffer (pH 2.0) and transferred to a reversed-phase analytical column, on which they were then separated. Even after exposure to at least 160 injections of non-treated urine and plasma samples, the retention efficiency of the precolumn was maintained with no increase in back pressure. Quantitative recoveries and good reproducibility were demonstrated with pindolol.  相似文献   

2.
HPLC and CE have been applied to the separation of some newly synthesized substances, including nonapeptides from the intrachinary region of insulin, insulin-like growth factors I and II (IGF I and II) and some penta- and hexapeptides. All the peptides are satisfactorily separated using a reversed-phase HPLC system with a C18 stationary phase and mobile phases of 20–40% acetonitrile (v/v) and 0.2% trifluoroacetic acid in water (v/v). The best CE separation of IGF I and II has been achieved in a 30 mM phosphate buffer (pH 4–5), whereas 150 mM phosphoric acid (pH 1.8) is optimal for the insulin nonapeptides. The latter electrolyte is also suitable for the CE separation of the hexapeptides, as is a micellar system containing 20 mM borate-50mM sodium dodecyl sulfate (pH 9.0). Complete CE resolution of the d- and l-forms is possible in a 50 mM phosphate buffer (pH 2.5) containing 10 mM β-cyclodextrin. UV spectrophotometric detection was used throughout, at wavelengths from 190 to 215 nm. The CE procedures are, in general, preferable to HPLC separations, as they exhibit better separation efficiencies, are faster and consume smaller amounts of analytes and reagents.  相似文献   

3.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

4.
An improved high-performance liquid chromatography method using a diisopropyl-C14 reversed-phase column (Zorbax Bonus-RP column) and a liquid–liquid extraction technique with UV detection is presented for the analysis of pyronaridine in human whole blood and plasma. Tribasic phosphate buffer (50 mM, pH 10.3) and diethyl ether were used for liquid–liquid extraction. The mobile phase consists of acetonitrile–0.08 M potassium dihydrogen phosphate buffer (13:87, v/v) with the pH 2.8 adjusted by orthophosphoric acid. Amodiaquine was found to be a suitable internal standard for the method. The quantification limit with UV detection at 275 nm was 3 ng on-column for both plasma and blood samples. The method was applied to plasma and blood specimens from a rabbit after a single intramuscular dose of pyronaridine tetraphosphate (20 mg/kg as base). From this in vivo study, evidence was found that pyronaridine is concentrated in blood cells, with a blood:plasma ratio ranging from 4.9 to 17.8. We conclude that blood is the preferred matrix for clinical pharmacokinetic studies.  相似文献   

5.
A simple and selective ion-pair HPLC method has been developed for the analysis of clarithromycin in aqueous solutions and in gastric juice. A Hypersil ODS 5-μm (150 × 4.6 mm I.D.) column was used with a mobile phase consisting of acetonitrile-aqueous 0.05 M phosphate buffer (pH 4.6) containing 5 mM 1-octanesulphonic acid (50:50, v/v). The column temperature was 50°C and detection was by UV absorption (210 nm). The limits of detection of 50-μl samples were 0.4 μg/ml (aqueous) and 0.78 μg/ml (0.5 ml gastric juice) or better. The assay was linear in the range of 1.56 to 100 μg/ml with r2 values greater than 0.99. The recovery from the gastric juice samples was 98.5±2.9%. The method was applied successfully to determine the stability of clarithromycin in 0.01 M HCl and gastric juice.  相似文献   

6.
An isocratic high-performance liquid chromatographic method with automated solid-phase extraction has been developed to determine foscarnet in calf and human serums. Extraction was performed with an anion exchanger, SAX, from which the analyte was eluted with a 50 mM potassium pyrophosphate buffer, pH 8.4. The mobile phase consisted of methanol–40 mM disodium hydrogenphosphate, pH 7.6 containing 0.25 mM tetrahexylammonium hydrogensulphate (25:75, v/v). The analyte was separated on a polyether ether ketone (PEEK) column 150×4.6 mm I.D. packed with Kromasil 100 C18, 5 μm. Amperometric detection allowed a quantification limit of 15 μM. The assay was linear from 15 to 240 μM. The recovery of foscarnet from calf serum ranged from 60.65±1.89% for 15 μM to 67.45±1.24% for 200 μM. The coefficient of variation was ≤3.73% for intra-assay precision and ≤7.24% for inter-assay precision for calf serum concentrations ranged from 15 to 800 μM. For the same samples, the deviation from the nominal value ranged from −8.97% to +5.40% for same day accuracy and from −4.50% to +2.77% for day-to-day accuracy. Selectivity was satisfactory towards potential co-medications. Replacement of human serum by calf serum for calibration standards and quality control samples was validated. Automation brought more protection against biohazards and increase in productivity for routine monitoring and pharmacokinetic studies.  相似文献   

7.
A reliable reversed-phase high-performance liquid chromatographic method was developed for the determination of liposomal nystatin in plasma. Nystatin is extracted by 1:2 (v/v) liquid–liquid extraction with methanol. Separation is achieved by HPLC after direct injection on a μBondapak™ C18 analytical column with a mobile phase composed of 10 mM sodium phosphate, 1 mM EDTA, 30% methanol and 30% acetonitrile adjusted to pH 6. Detection is by ultraviolet absorbance at 305 nm. Quantitation is based on the sum of the peak area concentration of the two major isomers of nystatin, which elute at 7.5–8.5 and 9.5–10.5 min. The assay was linear over the concentration range of 0.05 to 50 μg/ml. The lower limit of quantitation was 0.05 μg/ml, sufficient for investigating the plasma pharmacokinetics of liposomal nystatin in preclinical studies. Accuracies and intra- and inter-day precision showed good reproducibility. With minor modifications, this method also was used for assaying nystatin in various non-plasma body fluids and tissues.  相似文献   

8.
The reversed-phase HPLC methods were developed to determinate the covalently bound protein adducts of the novel anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) via its glucuronides after releasing aglycone by alkaline hydrolysis in human plasma and human serum albumin (HSA). An aliquot of 75 μl of the mixture was injected onto a Spherex C18 column (150×4.6 mm; 5 μm) at a flow-rate of 2.5 ml/min. The mobile phase comprising of acetonitrile:10 mM ammonium acetate buffer (24:76, v/v, pH 5.8) was used in an isocratic condition, and DMXAA was detected by fluorescence. The method was validated with respect to recovery, selectivity, linearity, precision, and accuracy. Calibration curves for DMXAA were constructed in the concentration range of 0.5–40 μM in washed blank human plasma or HSA prior to alkaline hydrolysis. The difference between the theoretical and calculated concentration and the relative standard deviation were less than 10% at all quality control (QC) concentrations. The limit of detection for the covalent adduct in human plasma or HSA is 0.20 μM. The methods presented good accuracy, precision and sensitivity for use in the preclinical and clinical studies.  相似文献   

9.
An effective gradient high-performance liquid chromatographic method for baseline separation of urinary 2-thiothiazolidine-4-carboxylic acid (TTCA), with photodiode array detection at 271 nm was described. o-Methylhippuric acid was used as an internal standard (I.S.). A 1-ml urine sample was saturated with 300 mg of sodium sulphate, acidified with 100 μl of 6 M hydrochloric acid, extracted twice with 2 ml of diethyl ether, and after evaporation, the residue was taken up in 1 ml of 0.1% (v/v) phosphoric acid. The two mobile phases used for gradient elution were: (A) 10 mM ammonium dihydrogenphosphate (pH 3.5) and (B) same concentration of buffer but containing 20% (v/v) of methanol (pH 4.8). The flow-rate was set at 1.0 ml/min. TTCA and I.S. were detected at 2.2 and 9.1 min, respectively. The method was validated with urine samples collected from normal subjects and workers occupationally exposed to carbon disulphide. The present method enables the detection of urinary TTCA at a concentration of 0.025 mg/l. Analytical recovery and reproducibility generally exceeded 90%. The proposed method is considered more sensitive, specific and reliable than other existing methods.  相似文献   

10.
A new high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of metampicillin and its metabolite ampicillin in biological fluids. The plasma, urine and bile samples were injected onto a precolumn packed with LiChrosorb RP-8 (25–40 μm) after simple dilution with an internal standard solution in 0.05 M phosphate buffer (pH 7.0). The polar plasma components were washed out using 0.05 M phosphate buffer (pH 7.0). After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by an Ultracarb 5 ODS-30 column with a gradient system of acetonitrile-0.02 M phosphate buffer (pH 7.0) as the mobile phase. The method showed excellent precision, accuracy and speed with a detection limit of 0.1 μg/ml. The total analysis time per sample was less than 40 min and the coefficients of variation for intra- and inter-assay were less than 5.1%. This method has been successfully applied to plasma, urine and bile samples from rats after intravenous injection of metampicillin.  相似文献   

11.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating cocaine and its three metabolites in rat serum microsamples (50 μl). The separation used a 2.1-mm I.D. reversed-phase Brownlee C18 column with an isocratic mobile phase consisting of methanol–acetonitrile–25.8 mM sodium acetate buffer, pH 2.2, containing 1.29·10−4M tetrabutylammonium phosphate (12.5:10:77.5, v/v/v). The detection limit was 2.5 ng/ml for all the compounds using an ultraviolet detector operated at 235 nm. The method was used to study the pharmacokinetics of cocaine after an intravenous (i.v.) bolus dose (4 mg/kg).  相似文献   

12.
We have developed a sensitive high-performance liquid chromatographic assay for the determination of the zidovudine metabolite 3′-amino-3′-deoxythimidine (AMT) using fluorescence detection and sensitivity in the picomolar range. Plasma was diluted with 0.05 M sodium phosphate buffer pH 7.2 and subsequently prepared for analysis using solid-phase extraction. AMT was derivatized with 9-fluorenyl methylchloroformate and chromatographed using a reversed-phase system. The mobile phase consisted of acetonitrile-0.01 M potassium phosphate buffer (pH 7) (32:68, v/v). The fluorescence of the column effluent was monitored at 262 nm (excitation) and 306 nm (emission). Good resolution of AMT from endogenous plasma components was obtained. Within- and between-day variability was less than 10%. The limit of quantitation was 0.9 μg/l. The assay was successfully applied to the determination of AMT in human plasma and plasma of mice treated with zidovudine.  相似文献   

13.
A high-performance liquid chromatography method for the simultaneous determination of pipecolic acid (Pip) and lysine (Lys), a precursor of Pip, in the rumen liquor and plasma of ruminant animals was established. Samples of rumen liquor and plasma were deproteinized with 50% acetonitrile and derivatized with a fluorescent agent 9-fluorenylmethyloxy carbonyl chloride (Fmoc-Cl). Chromatographic separation was achieved on a TSK gel ODS-80TM column using a reversed-phase gradient elution system. For the gradient elution, two mobile phases, A and B, were needed, both commonly consisted of: 5 mM l-proline, 2.5 mM cupric sulfate and 6.5 mM ammonium acetate. Mobile phase B additionally contains 50% (v/v) acetonitrile. The pH of both mobile phases was adjusted to 7.0. Derivatized Pip and Lys were detected on a fluorescent detector at excitation and emission wavelengths of 260 and 313 nm, respectively. The calibration curves were linear within the range 0 to 1 mM (r>0.999). The average recoveries for Pip and Lys were 95.9±1.8 and 93.2±2.5% in rumen liquor and 98.3±1.4 and 97.5±1.3% in plasma, respectively. The limits of detection for Pip and Lys were 0.6 and 0.7 μM in rumen liquor and 0.01 and 0.05 μM in plasma. The assay has acceptable precision, relative standard deviation (RSD) for reproducibility (within-day and day-to-day variation) were less than 5.2% for aqueous (5.0 μM Pip and Lys), MB9 (5.0 μM Pip and Lys), plasma (7.1 μM Pip and 85.6 μM Lys) and rumen liquor (28.4 μM Pip and 10.2 μM Lys) samples. The levels of Pip and Lys in faunated goats, determined from three animals over a period of two days sampling, were found to be 36.8±18.1 and 14.6±2.8 μM in rumen liquor, and 7.3±2.5 and 137.3±38.0 μM in plasma at 1 h after feeding. This is the first report on the normal levels of Pip in the rumen liquor and plasma of faunated goat.  相似文献   

14.
An isocratic high-performance liquid chromatographic method with column switching and direct injection has been developed to determine ciprofloxacin in plasma and Mueller–Hinton broth. An on-line dilution of the sample was performed with a loading mobile phase consisting of 173 mM phosphoric acid. The analyte was retained on a LiChrocart 4-4 precolumn filled with a LiChrospher 100 RP18, 5 μm. An electric-actuated system with two six-port valves allowed a clean-up step with a mixture 20 mM phosphate buffer (pH 3.5)–methanol (97: 3, v/v) and the transfer of the analyte by a back-flush mode to a 150×4.6 mm I.D. column packed with a Kromasil C8 5 μm, using a mobile phase of 20 mM phosphate buffer (pH 3.5)–acetonitrile (85:15, v/v). Fluorescence detection allowed a quantification limit of 0.078 μg/ml with a 40-μl sample size. The method was evaluated to determine its usefulness in studying the pharmacokinetic/pharmacodynamic behaviour of ciprofloxacin in an in vitro model.  相似文献   

15.
A sensitive reversed-phase high-performance liquid chromatographic method for the determination of atevirdine and its primary metabolite in human saliva or cerebrospinal fluid using solid-phase extraction is described. Samples mixed with internal standard and sodium phosphate buffer were applied to an activated C18 solid-phase extraction column. The reconstituted eluate was injected onto a Zorbax RX C8 column utilizing a mobile phase of 100 mM ammonium acetate (pH 4.0)–isopropyl alcohol–acetonitrile (55:20:25, v/v/v). Fluorescence detection was employed with excitation at 295 nm and emission at 456 nm. Quantitation was achieved using peak-height ratios. The detection response curve was linear from 2 to 850 nM for atevirdine in both human saliva and cerebrospinal fluid and from 2 to 250 nM for the metabolite in human saliva. The method was utilized to analyze cerebrospinal fluid and saliva samples from clinical studies.  相似文献   

16.
For the identification of drug abuse, a simple and rapid method which allows us to distinguish enantiomers of methamphetamine (MA) and its metabolites amphetamine (AP) and p-hydroxymethamphetamine (p-OHMA) in human urine was explored by coupling direct HPLC and HPLC-thermospray-mass spectrometry (HPLC-TSP-MS) both of which employ a β-cyclodextrin phenylcarbamate-bonded silica column. HPLC analysis was performed after the solid-phase extraction from the urine sample with Bond Elut SCX, and d- and l-enantiomers of MA, AP and p-OHMA could be separated well. The proposed conditions are as follows: eluent, acetonitrile-methanol-50 mM potassium phosphate buffer (pH 6.0) (10:30:60, v/v) flow-rate, 1.0 ml/min temperature, 25°C. The linear calibration curves were obtained for d- and l- MA and AP in the concentration range from 0.2 to 20 μg/ml; the relative standard deviation for d- and l-AP and d- and, l-MA ranged from 1.67 to 2.35% at 2 μg/ml and the detection limits were 50 ng/ml for d- and l-AP and d-MA and 100 ng/ml for l-MA. For the verification of the direct HPLC identification, HPLC-TSP-MS was also carried out under the same conditions except that acetonitrile-methanol-100 mM ammonium acetate (pH 6.0) (10:30:60, v/v) was used as an eluent. Upon applying the scan mode, 10 ng/ml for d- and l-AP and d-MA and 20 ng/ml for l-MA were the detection limits. Using the selected ion monitoring mode, 0.5 ng/ml, 0.8 ng/ml and 1 ng/ml could be detected for d- and l-AP, d-MA and l-MA, respectively.  相似文献   

17.
A new method for the determination of clenbuterol by reversed-phase HPLC with UV detection has been developed. Clenbuterol was eluted on a C8 column(250 × 4.6mm I.D.), using an isocratic eluent consisting of anacetonitrile-0.02 M phosphate buffer (25:75, v/v) adjusted to pH 2.8 with phosphoric acid. The method was linear from 2.5 to 50 ng injected. The detection limit was established to be 0.5 ng (signal/background ratio: 3), and the quantification limit was 2.5 ng. With the proposed method, we got a simple and rapid detection of clenbuterol in the retina, part of the animal where the biggest amount of clenbuterol is accumulated and where it remains for the longest time after any treatment.  相似文献   

18.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

19.
A new reversed-phase high-performance liquid chromatographic method allowing simultaneous measurement of plasma concentrations of disopyramide and quinidine is described. Disopyramide and quinidine were separated on a reversed-phase column using 0.05 M phosphate buffer (pH 3.0)—acetonitrile (73:27, v/v), as mobile phase and the peaks were monitored by UV absorbance at the wavelengths of 254 and 325 nm. The drugs were extracted from alkaline plasma with chloroform containing the internal standard. The organic phase was evaporated to dryness and the residue was redissolved in a small volume of the mobile phase before analysis by high-performance liquid chromatography. The method is convenient and reliable in routine monitoring of both drugs.  相似文献   

20.
A high-performance liquid chromatographic analytical method was developed for the determination of oxytetracycline in Artemia nauplii. A solid-phase extraction protocol was used to recover oxytetracycline and the internal standard tetracycline, from the Artemia samples. Oxytetracycline was analyzed using a 150 × 4.6 mm I.D. Hypersil-ODS column, a mobile phase of acetonitrile-tetrahydrofuran-0.01 M oxalic acid buffer (pH3.0) (15:3:82, v/v), and an ultraviolet detection wavelength of 365 nm. The calibration curve of oxytetracycline in Artemia was linear (r2 = 0.9998) from 0.1 to 6.4 μg/g of tissue. Using a signal-to-noise ratio of 4:1 the oxytetracycline detection limit was 10 ng/g of tissue. Mean recovery of oxytetracycline amounted to 97%, while intra-assay variability was 1.5%. Quantitative data from an in-vivo feeding study indicated an excellent uptake of oxytetracycline by Artemia, as its levels reached 25.6 μg per g of nauplii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号