首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite fluoropolymer-containing sorbents based on porous silicas were synthesized for the isolation and purification of biopolymers under nondenaturing conditions. Examples of the application of these sorbents in the separation of various mixtures of peptides and proteins and purification of nucleic acids from various sources (plasmid DNA and DNA from nucleated human blood cells) using the cartridge, column, and batch (sorption in a stirred volume) methods are presented. It was shown that the sorbents can be used in laboratory practice because they are selective to nucleic acids (DNA and RNA) and proteins. These materials combine the mechanical properties of the inorganic matrix with the specific sorption properties of the polymer phase and exhibit enhanced stability to alkaline hydrolysis. Alternative methods of preparing sorbents containing polytetrafluoroethylene, polytrifluorostyrene, and polyfluorobutadiene are described. By the example of polyfluorobutadiene-containing sorbents, a completely new method for obtaining fluorinated polymer phases was developed: the polymer phase was preliminarily formed on the surface of porous disperse carriers and was fluorinated with xenon difluoride.  相似文献   

2.
Molecularly imprinted polymers are being increasingly investigated as selective sorbents. For the recovery of cholesterol from aqueous media, the utility of the molecularly imprinted polymers has been limited by modest capacities and selectivities, especially when compared with alternative adsorbents reported for the binding of bile acids [Macromolecules 34 (2001) 1548]. This paper describes the use of cholesterol conjugated monomers and cross-linkers, which bind to the template cholesterol molecule by hydrophobic interactions. This leads to enhanced capacities and selectivities during the recovery of cholesterol from aqueous media. The templating effect is clearly seen in the enhanced capacity and selectivity in the retention of cholesterol vis-a-vis stigmasterol and testosterone.  相似文献   

3.
Sedimentation field-flow fractionation (SdFFF) instrumentation is now mature. Methodological procedure and particle separation development rules are well established even in the case of biological species. However, in some biological applications, retention properties of samples not predicted by any field-flow fractionation (FFF) elution models are observed. It is demonstrated that the trapping of cellular material in the separation system is not related to geometrical instrumentation features but to channel wall characteristics. The physicochemical particle–wall attractive interactions are different depending on the flow-rate and field intensity applied. Separation power in SdFFF for biological species is therefore limited by the intensity of these interactions. In terms of separation, a balance is to be found between external field and flow intensity to limit particle–wall interactions.  相似文献   

4.
Phosphorene, monolayer or few‐layer black phosphorus (BP), has recently triggered strong scientific interest for lithium/sodium ion batteries (LIBs/SIBs) applications. However, there are still challenges regarding large‐scale fabrication, poor air stability. Herein, we report the high‐yield synthesis of phosphorene with good crystallinity and tunable size distributions via liquid‐phase exfoliation of bulk BP in formamide. Afterwards, a densely packed phosphorene–graphene composite (PG‐SPS, a packing density of 0.6 g cm?3) is prepared by a simple and easily up‐scalable spark plasma sintering (SPS) process. When working as anode materials of LIBs, PG‐SPS exhibit much improved first‐cycle Coloumbic efficiency (60.2%) compared to phosphorene (11.5%) and loosely stacked phosphorene–graphene composite (34.3%), high specific capacity (1306.7 mAh g?1) and volumetric capacity (256.4 mAh cm?3), good rate capabilities (e.g., 415.0 mAh g?1 at 10 A g?1) as well as outstanding long‐term cycling life (91.9% retention after 800 cycles at 10 A g?1). Importantly, excellent air stability of PG‐SPS over the 60 days observation in maintaining its high Li storage properties can be achieved. On the contrary, 95.2% of BP in PG sample was oxidized after only 10 days exposure to ambience, leading to severe degradation of electrochemical properties.  相似文献   

5.
We have recently showed that the weighted contact number profiles (or the packing density profiles) of proteins are well correlated with those of the corresponding sequence conservation profiles. The results suggest that a protein structure may contain sufficient information about sequence conservation comparable to that derived from multiple homologous sequences. However, there are ambiguities concerning how to compute the packing density of the subunit of a protein complex. For the subunits of a complex, there are different ways to compute its packing density – one including the packing contributions of the other subunits and the other one excluding their contributions. Here we selected two sets of enzyme complexes. Set A contains complexes with the active sites comprising residues from multiple subunits, while set B contains those with the active sites residing on single subunits. In Set A, if the packing density profile of a subunit is computed considering the contributions of the other subunits of the complex, it will agree better with the sequence conservation profile. But in Set B the situations are reversed. The results may be due to the stronger functional and structural constraints on the evolution processes on the complexes of Set A than those of Set B to maintain the enzymatic functions of the complexes. The comparison of the packing density and the sequence conservation profiles may provide a simple yet potentially useful way to understanding the structural and evolutionary couplings between the subunits of protein complexes. Proteins 2013; 81:1192–1199. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
A review was made of experiments on humans in which air trapping by glottis closure during three-dimensional movements were examined in four subjects including former Olympic gymnasts. In brachiation and horizontal bar exercises, the behaviour of the larynx was monitored with a fiberoptic endoscope, and EMG-data were recorded from shoulder muscles. The results revealed that immobilization of the polyaxial connection between the shoulder girdle and the thorax by air trapping occurs in phases of extreme loading of the upper limbs. The closure of the airway by the larynx in humans serves three functions: first, the prevention of errors in deglutition; second, the production of vocal sounds; third, the retention of air inside the thoracic cavity. The latter function, air trapping, allows the immobilization of the rib cage for the muscular fixation of the shoulder blade on the trunk in movements that imply unusually high external forces acting on the upper limbs. This morphological-functional innovation probably has been made when early mammals invaded the three dimensional arboreal habitat, because it gave the tree-dwelling early primates the device to anchor themselves by the arms alone and to avoid falling out of trees. The specific functional characteristic of primates is the hermetic closure of the vocal and vestibular folds by rapidly contracting muscles in the folds. So the closure of the glottis, which in humans seems primarily an adaptation to the production of vocal tones, seems to go back to the adaptation of Tertiary arboreal primates to movements in a three-dimensional environment. Our conclusions are in agreement with the results of other contributions to this volume.  相似文献   

7.
Energy density (energy per volume) is a key consideration for portable, automotive, and stationary battery applications. Selenium (Se) lithium and sodium metal cathodes are created that are monolithic and free‐standing, and with record Se loading of 70 wt%. The carbon host is derived from nanocellulose, an abundant and sustainable forestry product. The composite is extremely dense (2.37 g cm?3), enabling theoretical volumetric capacity of 1120 mA h cm?3. Such architecture is fully distinct from previous Se–carbon nano‐ or micropowders, intrinsically offering up to 2× higher energy density. For Li storage, the cathode delivers reversible capacity of 1028 mA h cm?3 (620 mA h g?1) and 82% retention over 300 cycles. For Na storage, 848 mA h cm?3 (511 mA h g?1) is obtained with 98% retention after 150 cycles. The electrodes yield superb volumetric energy densities, being 1727 W h L?1 for Li–Se and 980 W h L?1 for Na–Se normalized by total composite mass and volume. Despite the low surface area, over 60% capacity is maintained as the current density is increased from 0.1 to 2 C (30 min charge) with Li or Na. Remarkably, the electrochemical kinetics with Li and Na are comparable, including the transition from interfacial to diffusional control.  相似文献   

8.
With the most recent development of ultrahigh capacity anodes, such as Li‐ or Si‐based anodes, metal fluorides hold promise as complementary high‐capacity conversion cathode materials for next‐generation energy storage devices. Despite their higher theoretical energy density compared to cells with sulfur cathodes, these materials have received dramatically less attention and little is understood about the origins of their electrochemical behavior. Here, the successful methodology to produce highly uniform size‐controlled mixed metal difluoride nanocomposites is reported. It is discovered that such materials undergo reduction in a single step with a reduction potential intermediate to those for the corresponding single‐metal difluorides and that a solid solution is reformed upon charging, which is advantageous for practical applications. For the first time the progressive formation of metal trifluorides upon repeated cycling of difluorides is reported. Systematic electrochemical measurements in combination with postmortem analyses lead to the conclusion that the cathode stability strongly depends on the ability to prevent formation and growth of a resistive cathode solid electrolyte interphase, which, in turn, strongly depends on the metal composition. This methodology and new findings will help to elucidate a path to developing metal fluoride–based commercial Li‐ion batteries and provide guidelines for material selection.  相似文献   

9.
A cathode‐flow lithium‐iodine (Li–I) battery is proposed operating by the triiodide/iodide (I3?/I?) redox couple in aqueous solution. The aqueous Li–I battery has noticeably high energy density (≈0.28 kWh kg?1cell) because of the considerable solubility of LiI in aqueous solution (≈8.2 m ) and reasonably high power density (≈130 mW cm?2 at a current rate of 60 mA cm?2, 328 K). In the operation of cathode‐flow mode, the Li–I battery attains high storage capacity (≈90% of the theoretical capacity), Coulombic efficiency (100% ± 1% in 2–20 cycles) and cyclic performance (>99% capacity retention for 20 cycles) up to total capacity of 100 mAh.  相似文献   

10.
In this paper, a novel plasmonic filter with very high extinction ratio and low insertion loss is proposed based on the coherent coupled nano-cavity array in a metal–insulator–metal (MIM) waveguide. The coherent coupling interactions among nano-cavities are investigated with an analytical model which is derived based on the temporal coupled-mode theory and transfer-matrix method. The destructive interference of the surface plasmon polaritons coupled from the nano-cavities at the resonant wavelength is achieved by suitably designing the period of the cavity array, which may be used for increasing the extinction ratio of the filter based on the nano-cavity array in the MIM waveguide. A plasmonic filter with an extinction ratio higher than 60 dB and an insertion loss less than 1.0 dB is obtained by applying the destructive interference in the design of a six-rectangular-cavity array in an Ag–air–Ag waveguide. And the correctness of the design for the filter is verified by the results obtained with the finite-difference time-domain simulation technique. This work may provide useful schemes and approaches for realization of various wavelength-sensitive devices in plasmonic integrated circuits.  相似文献   

11.
Hydrophobic interaction chromatography media suited for large scale separations were compared regarding dynamic binding capacity, recovery and mass transfer properties. In all cases, pore diffusion was the rate limiting step. Reduced heights equivalent to a theoretical plate for bovine serum albumin derived from breakthrough curves at reduced velocities between 60 and 1500 ranged from 10 to 700. Pore diffusion coefficients were derived from pulse response experiments for the model proteins alpha-lactalbumin, lysozyme, beta-lactoglobulin, bovine serum albumin and immunoglobulin G. Diffusivity of lysozyme did not follow the trend of decreasing diffusivity with increasing molecular mass, as observed for the rest of the proteins. In general, mass transfer coefficients were smaller compared to ion-exchange chromatography. Dynamic binding capacities for the model protein bovine serum albumin varied within a broad range. However, sorbents based on polymethacrylate showed a lower dynamic capacity than media based on Sepharose. Some sorbents could be clustered regarding binding capacity affected by salt. These sorbents exhibited a disproportional increase of binding capacity with increasing ammonium sulfate concentration. Recovery of proteins above 75% could be observed for all sorbents. Several sorbents showed a recovery close to 100%.  相似文献   

12.
Trogtalite CoSe2 nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe2@BCN‐750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe2@BCN‐750 nanotubes deliver an excellent storage capacity of 580 mA h g?1 at current density of 100 mA g?1 at 100th cycle, as the anode of a sodium ion battery. The CoSe2@BCN‐750 nanotubes exhibit a significant rate capability (100–2000 mA g?1 current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g?1). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na+ ion storage sites are identified through first‐principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe2, into BCN tubes, enables the observed excellent adsorption energy of Na+ ions in high energy storage devices, which supports the experimental results.  相似文献   

13.
14.
ABSTRACT Of the transmitter attachment techniques for birds, the subcutaneous anchor provides a secure attachment that yields relatively few secondary effects. However, the use of subcutaneous anchors has been limited by transmitter size and retention time. Using a modified method of attachment that utilized two subcutaneous anchors, we deployed 69 GPS transmitters, plus 13 VHF transmitters that were similar in size and weight to GPS models, on Pacific Black Brant (Branta bernicla nigricans). Prior to our study, only harnesses were used for attaching GPS transmitters on birds, mainly because GPS transmitters are too large for other external attachment techniques and implantation in the body cavity attenuates the GPS signal. Thus, to increase the size capacity of anchor attachment and to avoid the well‐documented negative effects of harnesses on behavior and survival, we added a second anchor at the transmitter's posterior end. The double‐anchor attachment technique was quickly and easily accomplished in the field, requiring bird handling times of <10 min. Incidental recoveries of tagged Brant indicate a high degree of transmitter retention. Five recaptured birds (4–6 weeks after deployment) and eight killed by hunters (3–6 mo after deployment) retained their GPS transmitters. For studies involving the use of relatively large transmitters, the double‐anchor method appears to provide a viable alternative for external attachment.  相似文献   

15.
An entire series of SPE sorbents, classified into three different categories (apolar, mixed-mode and polymeric) was evaluated for sample preparation of a data-dependent LC-MS-MS "general unknown" screening procedure. An extraction procedure was formulated for each individual column, in agreement with the enclosed instructions, according to the characteristics of each packing. For conciseness, only neutral and basic compounds were chosen for this sorbent suitability test. Thus, the goal of our research was to select the best sorbent with regard to extraction yield and cleanliness of the extracts, all with respect to data-dependent acquisition (DDA) mediated LC-MS-MS general unknown screening. We conclude that for that purpose an Isolute C(8) sorbent performs best in terms of extraction yield and clean-up potential.  相似文献   

16.
Tuning the donor–acceptor (D–A) weight ratio is an essential step to optimize the performance of a bulk heterojunction (BHJ) solar cell. The unoptimized regime with a low acceptor concentration is generally unexplored despite it may reveal the early stage electronic D–A interactions. In this study, PTB7:PC71BM is used to examine factors that limit the device performance in unoptimized regime. The key limiting factor is the creation of traps and localized states originated from fullerene molecules. Photothermal deflection spectroscopy is used to quantify the trap density. Starting with pristine PTB7, addition of small concentration of fullerene increases the electron trap density and lowers the electron mobility. When the D–A weight ratio reaches 1:0.1, fullerene percolation occurs. There is an abrupt drop in trap density and simultaneously a six orders of magnitude increase in the electron mobility. Furthermore, the fill factors of the corresponding photovoltaic devices are found to anticorrelate with the trap density. This study reveals that electron trapping is the key limiting factor for unoptimized BHJ solar cells in low fullerene regime.  相似文献   

17.
Aqueous batteries are facing big challenges in the context of low working voltages and energy density, which are dictated by the narrow electrochemical window of aqueous electrolytes and low specific capacities of traditional intercalation‐type electrodes, even though they usually represent high safety, low cost, and simple maintenance. For the first time, this work demonstrates a record high‐energy‐density (1503 Wh kg?1 calculated from the cathode active material) aqueous battery system that derives from a novel electrolyte design to expand the electrochemical window of electrolyte to 3 V and two high‐specific‐capacity electrode reactions. An acid‐alkaline dual electrolyte separated by an ion‐selective membrane enables two dissolution/deposition electrode redox reactions of MnO2/Mn2+ and Zn/Zn(OH)42? with theoretical specific capacities of 616 and 820 mAh g?1, respectively. The newly proposed Zn–Mn2+ aqueous battery shows a high Coulombic efficiency of 98.4% and cycling stability of 97.5% of discharge capacity retention for 1500 cycles. Furthermore, in the flow battery based on Zn–Mn2+ pairs, more excellent stability of 99.5% of discharge capacity retention for 6000 cycles is achieved due to greatly improved reversibility of the Zn anode. This work provides a new path for the development of novel aqueous batteries with high voltage and energy density.  相似文献   

18.
We describe the development of an HPLC method with diode-array detection (DAD) for the analysis and identification of 20 substances with anabolic properties, that are considered as potential growth promoters, to be used for the analysis of extracts of calf urine samples. The substances are separated on an RP-Select B column using a mobile phase consisting of a mixture of acetonitrile and water. Gradient elution from 43–76% acetonitrile in water with a concave curve was used to achieve a good separation of the compounds with an acceptable analysis time. For the identification, a retention parameter and the UV spectrum were used. The retention parameter was the retention time corrected with a reference mixture. The latter reduced the standard deviations to about 25% of their original values. The limits of detection of the HPLC system ranged from 0.5–5 ng injected amount for the androgens, progestagens, stilbenes and resorcylic acid lactones and to 5–10 ng injected amount for the oestrogens. After extraction from urine the limits of detection were increased by the presence of matrix components, but they were between 5 and 10 ng injected amount for most of the substances.  相似文献   

19.
In response to the demand for flexible and sustainable energy storage devices that exhibit high electrochemical performance, a supercapacitor system is fabricated using mulberry tree‐derived paper as a substrate and Poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) and carbon black as the active material. The mulberry paper‐based supercapacitor system demonstrates high energy density of 29.8–39.8 Wh kg?1 and power density of 2.8–13.9 kW kg?1 with 90.7% retention of its initial capacity over 15 000 charge–discharge cycles. In addition, the mulberry tree fibers are known to have superior mechanical strength and toughness and the mulberry paper‐based supercapacitor; as a result, exhibit high mechanical and chemical toughness; 99% of its initial capacity is retained after 100 repeated applications of bending strains, and twisting. 94% capacity retention is observed even after exposure to HCl and H2SO4 acid solutions. The fabrication methodology of the mulberry‐based supercapacitor is highly scalable and could be stacked to increase the energy storage capacity, where operation of light‐emitting diode lights with a drive voltage of 12 V integrated in a wearable device is demonstrated.  相似文献   

20.
Molecularly imprinted polymers are used for creating a specific cavity and selective recognition sites for the structure of a target molecule in a polymeric structure. In this study, specific molecularly imprinted cryogel cartridges were synthesized using two distinct functional monomers to compare imprinting efficiency for the selective recognition of Tyrosine (Tyr). Tyr-imprinted cryogel cartridge (MIP1) was prepared using metal-chelate coordination for the imprinting process by free-radical bulk polymerization under frozen conditions, and Tyr-imprinted cryogel cartridge (MIP2) was prepared in the same way using hydrophobic effects for imprinting. After the characterization of the cryogel cartridges was carried out, the optimum adsorption conditions of both were determined according to the different parameters such as flow rate (0.5–2.5 ml/min), pH of the medium (4.0–8.0), initial Tyr concentration (0.1–3.0 mg/ml), and temperature (4–45°C). Selectivity experiments of Tyr-imprinted and non-imprinted cryogel cartridges were carried out by using phenylalanine, tryptophan, and cysteine. Besides, the eluted Tyr from MIP1 and MIP2 cryogel cartridge were applied to FPLC system. Also, the reusability experiments of Tyr-imprinted cryogel cartridges was observed no significant decrease in the adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号