首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the Cretaceous–Palaeogene (K–Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K–Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K–Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K–Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene.  相似文献   

2.
Australia is in the midst of an extinction crisis, having already lost 10% of terrestrial mammal fauna since European settlement and with hundreds of other species at high risk of extinction. The decline of the nation''s biota is a result of an array of threatening processes; however, a comprehensive taxon‐specific understanding of threats and their relative impacts remains undocumented nationally. Using expert consultation, we compile the first complete, validated, and consistent taxon‐specific threat and impact dataset for all nationally listed threatened taxa in Australia. We confined our analysis to 1,795 terrestrial and aquatic taxa listed as threatened (Vulnerable, Endangered, or Critically Endangered) under Australian Commonwealth law. We engaged taxonomic experts to generate taxon‐specific threat and threat impact information to consistently apply the IUCN Threat Classification Scheme and Threat Impact Scoring System, as well as eight broad‐level threats and 51 subcategory threats, for all 1,795 threatened terrestrial and aquatic threatened taxa. This compilation produced 4,877 unique taxon–threat–impact combinations with the most frequently listed threats being Habitat loss, fragmentation, and degradation (n = 1,210 taxa), and Invasive species and disease (n = 966 taxa). Yet when only high‐impact threats or medium‐impact threats are considered, Invasive species and disease become the most prevalent threats. This dataset provides critical information for conservation action planning, national legislation and policy, and prioritizing investments in threatened species management and recovery.  相似文献   

3.
We developed a continental energetics‐based model of daily mallard (Anas platyrhynchos) movement during the non‐breeding period (September to May) to predict year‐specific migration and overwinter occurrence. The model approximates movements and stopovers as functions of metabolism and weather, in terms of temperature and frozen precipitation (i.e., snow). The model is a Markov process operating at the population level and is parameterized through a review of literature. We applied the model to 62 years of daily weather data for the non‐breeding period. The average proportion of available habitat decreased as weather severity increased, with mortality decreasing as the proportion of available habitat increased. The most commonly used locations during the course of the non‐breeding period were generally consistent across years, with the most inter‐annual variation present in the overwintering area. Our model revealed that the distribution of mallards on the landscape changed more dramatically when the variation in daily available habitat was greater. The main routes for avian migration in North America were predicted by our simulations: the Atlantic, Mississippi, Central, and Pacific flyways. Our model predicted an average of 77.4% survivorship for the non‐breeding period across all years (range = 76.4%–78.4%), with lowest survivorship during autumn (90.5 ± 1.4%), intermediate survivorship in winter (91.8 ± 0.7%), and greatest survivorship in spring (93.6 ± 1.1%). We provide the parameters necessary for exploration within and among other taxa to leverage the generalizability of this migration model to a broader expanse of bird species, and across a range of climate change and land use/land cover change scenarios.  相似文献   

4.
Genome sequencing has demonstrated that besides frequent small-scale duplications, large-scale duplication events such as whole genome duplications (WGDs) are found on many branches of the evolutionary tree of life. Especially in the plant lineage, there is evidence for recurrent WGDs, and the ancestor of all angiosperms was in fact most likely a polyploid species. The number of WGDs found in sequenced plant genomes allows us to investigate questions about the roles of WGDs that were hitherto impossible to address. An intriguing observation is that many plant WGDs seem associated with periods of increased environmental stress and/or fluctuations, a trend that is evident for both present-day polyploids and palaeopolyploids formed around the Cretaceous–Palaeogene (K–Pg) extinction at 66 Ma. Here, we revisit the WGDs in plants that mark the K–Pg boundary, and discuss some specific examples of biological innovations and/or diversifications that may be linked to these WGDs. We review evidence for the processes that could have contributed to increased polyploid establishment at the K–Pg boundary, and discuss the implications on subsequent plant evolution in the Cenozoic.  相似文献   

5.
The extensive Late Cretaceous – Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous – Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early – Middle Eocene. Evolutionary source – sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.  相似文献   

6.
The end‐Cretaceous mass extinction ranks among the most severe extinctions of all time; however, patterns of extinction and recovery remain incompletely understood. In particular, it is unclear how severe the extinction was, how rapid the recovery was and how sampling biases might affect our understanding of these processes. To better understand terrestrial extinction and recovery and how sampling influences these patterns, we collected data on the occurrence and abundance of fossil mammals to examine mammalian diversity across the K‐Pg boundary in North America. Our data show that the extinction was more severe and the recovery more rapid than previously thought. Extinction rates are markedly higher than previously estimated: of 59 species, four survived (93% species extinction, 86% of genera). Survival is correlated with geographic range size and abundance, with widespread, common species tending to survive. This creates a sampling artefact in which rare species are both more vulnerable to extinction and less likely to be recovered, such that the fossil record is inherently biased towards the survivors. The recovery was remarkably rapid. Within 300 000 years, local diversity recovered and regional diversity rose to twice Cretaceous levels, driven by increased endemicity; morphological disparity increased above levels observed in the Cretaceous. The speed of the recovery tends to be obscured by sampling effects; faunas show increased endemicity, such that a rapid, regional increase in diversity and disparity is not seen in geographically restricted studies. Sampling biases that operate against rare taxa appear to obscure the severity of extinction and the pace of recovery across the K‐Pg boundary, and similar biases may operate during other extinction events.  相似文献   

7.
Large‐scale patterns of biodiversity and formation have garnered increasing attention in biogeography and macroecology. The Qinghai‐Tibet Plateau (QTP) is an ideal area for exploring these issues. However, the QTP consists of multiple geographic subunits, which are understudied. The Kunlun Mountains is a geographical subunit situated in the northern edge of the QTP, in northwest China. The diversity pattern, community phylogenetic structures, and biogeographical roles of the current flora of the Kunlun Mountains were analyzed by collecting and integrating plant distribution, regional geological evolution, and phylogeography. A total of 1911 species, 397 genera, and 75 families present on the Kunlun Mountains, of which 29.8% of the seed plants were endemic to China. The mean divergence time (MDT) of the Kunlun Mountains flora was in the early Miocene (19.40 Ma). Analysis of plant diversity and MDT indicated that the eastern regions of the Kunlun Mountains were the center of species richness, endemic taxa, and ancient taxa. Geographical origins analysis showed that the Kunlun Mountains flora was diverse and that numerous clades were from East Asia and Tethyan. Analysis of geographical origins and geological history together highlighted that the extant biodiversity on the Kunlun Mountains appeared through species recolonization after climatic fluctuations and glaciations during the Quaternary. The nearest taxon index speculated that habitat filtering was the most important driving force for biodiversity patterns. These results suggest that the biogeographical roles of the Kunlun Mountains are corridor and sink, and the corresponding key processes are species extinction and immigration. The Kunlun Mountains also form a barrier, representing a boundary among multiple floras, and convert the Qinghai‐Tibet Plateau into a relatively closed geographical unit.  相似文献   

8.
The study of the global mass extinction event at the Cretaceous–Palaeogene (K/Pg) boundary can aid in understanding patterns of selective extinction, and survival and dynamics of ecosystem recovery. Outcrops in the Maastrichtian type area (south-east Netherlands, north-east Belgium) comprise a stratigraphically expanded K/Pg boundary succession that offers a unique opportunity to study marine ecosystem recovery within the first few thousand years following the mass extinction event. A quantitative analysis was performed on systematically sampled macrofossils of the topmost Maastrichtian and lowermost Danian strata at the former Ankerpoort-Curfs quarry (Geulhem), which represent ‘snapshots’ of the latest Cretaceous and earliest Palaeogene marine ecosystems, respectively. Molluscs in particular are diverse and abundant in the studied succession. Regional ecosystem changes across the K/Pg boundary are relatively minor, showing a decline in suspension feeders, accompanied by an ecological shift to endobenthic molluscs. The earliest Paleocene gastropod assemblage retains many ‘Maastrichtian’ features and documents a fauna that temporarily survived into the Danian. The shallow, oligotrophic carbonate platform in this area was inhabited by taxa that were adapted to low nutrient levels and resistant to starvation. As a result, the local taxa were less affected by the short-lived detrimental conditions related to K/Pg boundary perturbations, such as darkness, cooling, starvation and ocean acidification. This resulted in relatively high survival rates, which enabled rapid recolonization and recovery of marine faunas in the Maastrichtian type area.  相似文献   

9.
The response of the Earth’s biota to global change is of fundamental interest to paleontologists, but patterns of change in paleontologic data are also of interest to a wider spectrum of Earth scientists in that those patterns are of great significance in constraining hypotheses that attempt to explain physical changes in the Earth’s environment. The Cretaceous–Tertiary (K–T) boundary is a case in point. Some paleontologists have criticized the bolide impact hypothesis, not because they deny the impact but because the proposed effects of that impact do not always conform to the available paleontological data. Benthic foraminifera are of particular interest in this context because it has been suggested for over 20 years that shallow-water benthic foraminifera were affected more severely than deep-water benthic foraminifera by events at the K–T boundary. This observation adds to the fact of planktonic foraminiferal extinction and indicates that K–T boundary environmental effects were largely restricted to shallow waters. In this paper I review all published works on smaller benthic foraminifera at the K–T boundary and conclude the following. (1) Shallow-water benthic foraminifera were not more severely affected than deeper dwelling species. True extinction, as opposed to local extinction and/or mass mortality, is generally quite low no matter what the water depth. (2) The data are not sufficient in quality, quantity and geographic range to conclude that there is a latitudinal pattern of extinction. (3) In general, biotic changes (such as they are) begin before the boundary in shallow and intermediate depth waters and at the boundary in deep water. Disagreements about the placement of the boundary and the presence, absence and duration of hiatuses hinder more precise conclusions. (4) There appears to be preferential survivorship of epifaunal species into the early Danian with a short interval dominated by infaunal taxa in the earliest Danian. This pattern can best be explained by short-lived input of increased amounts of organic matter at the boundary followed by a sudden collapse of primary productivity and, hence, major reduction or cessation of organic flux to the seafloor. In summary, based on the current dataset, smaller benthic foraminifera, no matter whether they lived in shallow or deep waters, high or low latitudes, or infaunal or epifaunal microhabitats, survived the environmental events across the K–T boundary quite well. Mass extinction does not characterize this group of organisms at this time.  相似文献   

10.
The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms.  相似文献   

11.
Insect herbivores are considered vulnerable to extinctions of their plant hosts. Previous studies of insect-damaged fossil leaves in the US Western Interior showed major plant and insect herbivore extinction at the Cretaceous–Palaeogene (K–T) boundary. Further, the regional plant–insect system remained depressed or ecologically unbalanced throughout the Palaeocene. Whereas Cretaceous floras had high plant and insect-feeding diversity, all Palaeocene assemblages to date had low richness of plants, insect feeding or both. Here, we use leaf fossils from the middle Palaeocene Menat site, France, which has the oldest well-preserved leaf assemblage from the Palaeocene of Europe, to test the generality of the observed Palaeocene US pattern. Surprisingly, Menat combines high floral diversity with high insect activity, making it the first observation of a ‘healthy’ Palaeocene plant–insect system. Furthermore, rich and abundant leaf mines across plant species indicate well-developed host specialization. The diversity and complexity of plant–insect interactions at Menat suggest that the net effects of the K–T extinction were less at this greater distance from the Chicxulub, Mexico, impact site. Along with the available data from other regions, our results show that the end-Cretaceous event did not cause a uniform, long-lasting depression of global terrestrial ecosystems. Rather, it gave rise to varying regional patterns of ecological collapse and recovery that appear to have been strongly influenced by distance from the Chicxulub structure.  相似文献   

12.
Ecological research is often hampered by the inability to quantify animal diets. Diet composition can be tracked through DNA metabarcoding of fecal samples, but whether (complex) diets can be quantitatively determined with metabarcoding is still debated and needs validation using free‐living animals. This study validates that DNA metabarcoding of feces can retrieve actual ingested taxa, and most importantly, that read numbers retrieved from sequencing can also be used to quantify the relative biomass of dietary taxa. Validation was done with the hole‐nesting insectivorous Pied Flycatcher whose diet was quantified using camera footage. Size‐adjusted counts of food items delivered to nestlings were used as a proxy for provided biomass of prey orders and families, and subsequently, nestling feces were assessed through DNA metabarcoding. To explore potential effects of digestion, gizzard and lower intestine samples of freshly collected birds were subjected to DNA metabarcoding. For metabarcoding with Cytochrome Oxidase subunit I (COI), we modified published invertebrate COI primers LCO1490 and HCO1777, which reduced host reads to 0.03%, and amplified Arachnida DNA without significant changing the recovery of other arthropod taxa. DNA metabarcoding retrieved all commonly camera‐recorded taxa. Overall, and in each replicate year (N = 3), the relative scaled biomass of prey taxa and COI read numbers correlated at R = .85 (95CI:0.68–0.94) at order level and at R = .75 (CI:0.67–0.82) at family level. Similarity in arthropod community composition between gizzard and intestines suggested limited digestive bias. This DNA metabarcoding validation demonstrates that quantitative analyses of arthropod diet is possible. We discuss the ecological applications for insectivorous birds.  相似文献   

13.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

14.
Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade‐offs and correlations among individual‐level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long‐term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%–63%) variation in leaf‐level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait‐based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size.  相似文献   

15.
There is a growing demand for ecological restoration using suitable seeds following international standards or national legal demands for local seed‐sourcing. However, before selecting the appropriate geographic origin of seeds, it is vital to explore taxonomic complexity related to the focal taxa. We used ddRAD‐seq to screen genomic diversity within Carex bigelowii s.lat. focussing on Norway. This species complex is considered a candidate for seeding, but presents considerable morphological, ecological, and genetic variation. The genetic structure of 132 individuals of C. bigelowii s.lat., including Carex nigra as an outgroup, was explored using ordinations, clustering analyses, and a genetic barrier algorithm. Two highly divergent clusters were evident, supporting the recognition of two taxonomic units “C. dacica” and C. bigelowii “subsp. bigelowii”. Previously defined seed‐sourcing regions for C. bigelowii s.lat. did not consider the known taxonomic complexity, and therefore interpreted the overall genetic structure as seed‐sourcing regions, not taxa. We estimated genetic neighborhood sizes within each taxon to be 100–150 km and 300 km, respectively, indicating species‐specific delimitations of local seed‐sourcing regions. Frequent hybrids, local genetic distinctiveness, and suggested ecotypes add complexity to the discussed seed‐sourcing regions. Our results show how genomic screening of diversity and structure in a species complex can alleviate the taxonomic impediment, inform practical questions, and legal requirements related to seed‐sourcing, and together with traditional taxonomic work provide necessary information for a sound management of biodiversity.  相似文献   

16.
In several higher animal taxa, such as mammals and birds, the distribution of species body sizes is heavily skewed towards small size. Previous studies have suggested that small‐bodied organisms are less prone to extinction than large‐bodied species. If small body size is favourable during mass extinction events, a post mass extinction excess of small‐bodied species may proliferate and maintain skewed body size distributions sometime after. Here, we modelled mass extinctions and found that even unrealistically strong body mass selection has little effect on the skew of interspecific body size distributions. Moreover, selection against large body size may, counter intuitively, skew size distributions towards large body size. In any case, subsequent evolutionary diversification rapidly erases these rather small effects mass extinctions may have on size distributions. Next, we used body masses of extant species and phylogenetic methods to investigate possible changes in body size distributions across the Cretaceous–Paleogene (K‐Pg) mass extinction. Body size distributions of extant clades that originated during the Cretaceous are on average more skewed than their subclades that originated during the Paleogene, but the difference is only minor in mammals, and in birds, it can be explained by a positive relationship between species richness and skewness that is also present in clades that originated after the transition. Hence, we cannot infer from extant species whether the K‐Pg mass extinctions were size‐selective, but they are not the reason why most extant bird and mammal species are small‐bodied.  相似文献   

17.
A prominent hypothesis in the diversification of placental mammals after the Cretaceous–Palaeogene (K/Pg) boundary suggests that the extinction of non-avian dinosaurs resulted in the ecological release of mammals, which were previously constrained to small body sizes and limited species richness. This ‘dinosaur incumbency hypothesis’ may therefore explain increases in mammalian diversity via expansion into larger body size niches, that were previously occupied by dinosaurs, but does not directly predict increases in other body size classes. To evaluate this, we estimate sampling-standardized diversity patterns of terrestrial North American fossil mammals within body size classes, during the Cretaceous and Palaeogene. We find strong evidence for post-extinction diversity increases in all size classes. Increases in the diversity of small-bodied species (less than 100 g, the common body size class of Cretaceous mammals, and much smaller than the smallest non-avialan dinosaurs (c. 400 g)) were similar to those of larger species. We propose that small-bodied mammals had access to greater energetic resources or were able to partition resources more finely after the K/Pg mass extinction. This is likely to be the result of a combination of widespread niche clearing due to the K/Pg mass extinctions, alongside a suite of biotic and abiotic changes that occurred during the Late Cretaceous and across the K/Pg boundary, such as shifting floral composition, and novel key innovations among eutherian mammals.  相似文献   

18.
Survival rates are a central component of life‐history strategies of large vertebrate species. However, comparative studies seldom investigate interspecific variation in survival rates with respect to other life‐history traits, especially for males. The lack of such studies could be due to the challenges associated with obtaining reliable datasets, incorporating information on the 0–1 probability scale, or dealing with several types of measurement error in life‐history traits, which can be a computationally intensive process that is often absent in comparative studies. We present a quantitative approach using a Bayesian phylogenetically controlled regression with the flexibility to incorporate uncertainty in estimated survival rates and quantitative life‐history traits while considering genetic similarity among species and uncertainty in relatedness. As with any comparative analysis, our approach makes several assumptions regarding the generalizability and comparability of empirical data from separate studies. Our model is versatile in that it can be applied to any species group of interest and include any life‐history traits as covariates. We used an unbiased simulation framework to provide “proof of concept” for our model and applied a slightly richer model to a real data example for pinnipeds. Pinnipeds are an excellent taxonomic group for comparative analysis, but survival rate data are scarce. Our work elucidates the challenges associated with addressing important questions related to broader ecological life‐history patterns and how survival–reproduction trade‐offs might shape evolutionary histories of extant taxa. Specifically, we underscore the importance of having high‐quality estimates of age‐specific survival rates and information on other life‐history traits that reasonably characterize a species for accurately comparing across species.  相似文献   

19.
The balance of pollination competition and facilitation among co‐flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant–pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio‐temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi‐scale plant–pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio‐temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect‐pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume–grass strips) across a farm‐scale experiment (125 ha). We applied an individual‐based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio‐temporal heterogeneity in plant–pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra‐ and interspecific plant–pollinator interactions respond to spatio‐temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co‐occurrence of pollinator‐mediated facilitative and competitive interactions among plant species and individuals.  相似文献   

20.
  1. Satellite tracking of animals is very widespread across a range of marine, freshwater, and terrestrial taxa. Despite the high cost of tags and the advantages of long deployments, the reasons why tracking data from tags stop being received are rarely considered, but possibilities include shedding of the tag, damage to the tag (e.g., the aerial), biofouling, battery exhaustion, or animal mortality.
  2. We show how information relayed via satellite tags can be used to assess why tracking data stop being received. As a case study to illustrate general approaches that are broadly applicable across taxa, we examined data from Fastloc‐GPS Argos tags deployed between 2012 and 2019 on 78 sea turtles of two species, the green turtle (Chelonia mydas) and the hawksbill turtle (Eretmochelys imbricata).
  3. Tags transmitted for a mean of 267 days (SD = 113 days, range: 26–687 days, median = 251 days). In 68 of 78 (87%) cases, battery failure was implicated as the reason why tracking data stopped being received. Some biofouling of the saltwater switches, which synchronize transmissions with surfacing, was evident in a few tags but never appeared to be the reason that data reception ceased.
  4. Objectively assessing why tags fail will direct improvements to tag design, setup, and deployment regardless of the study taxa. Assessing why satellite tags stop transmitting will also inform on the fate of tagged animals, for example, whether they are alive or dead at the end of the study, which may allow improved estimates of survival rates.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号