首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate–acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15–2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.  相似文献   

2.
An improved high-performance liquid chromatographic (HPLC) method utilizing solid-phase extraction (SPE) and midbore chromatography was developed for the determination of ranitidine in human plasma. A mobile phase of 20 mM K2HPO4-acetonitrile-triethylamine (87.9:12.0:0.1, v/v) pH 6.0 was used with a phenyl analytical column and ultraviolet detection (UV). The method demonstrated linearity from 25 to 1000 ng/ml in 500 μl of plasma with a detection limit of 10 ng/ml. The method was utilized in a pharmacokinetic study evaluating the effects of pancreatico-biliary secretions on ranitidine absorption.  相似文献   

3.
A novel, highly sensitive method was developed for simultaneous determination of tramadol and its main active metabolite O-demethyltramadol (ODMT) in rat plasma. The method involves a single-step extraction procedure and a specific determination by high-performance liquid chromatography with electrochemical detection, using an ethoxy analogue of tramadol (L-233) as internal standard. The dual-electrode detector was operated in the oxidation-screening mode. Absolute recoveries of tramadol and ODMT were about 80%. Calibration curves were linear over a concentration range of 10–1000 ng/ml for ODMT and 10–10 000 ng/ml for tramadol with intra- and inter-day coefficients of variation not exceeding 10% and 15%, respectively. The limit of quantification for tramadol and ODMT was lower than 15 ng/ml and 10 ng/ml using 100 μl of plasma, respectively. The described method allows an adequate characterization of the plasma vs. time profiles for both compounds.  相似文献   

4.
On irradiation with ultraviolet light, the antiinflammatory agent sulindac and its two metabolites sulindac sulfone and sulindac sulfide form highly fluorescent derivatives. This reaction was exploited for the sensitive and selective detection of these compounds in serum using reversed-phase high-performance liquid chromatography on a Ultrasphere octylsilane column (150 × 4.6 mm I.D.) at ambient temperature with a flow-rate of 0.5 ml/min. The analytes of interest were isolated from serum using a Bond-Elut C2 column with satisfactory recovery and selectivity. The detection limits were 10 ng/ml for each of the three analytes using 1 ml of serum and the limit of quantitation was 50 ng/ml. Linear calibration curves from 50 to 1000 ng/ml for all three analytes show coefficients of determination of 0.9999. The post-column ultraviolet irradiation was optimized and the effect of irradiation time on the fluorescence response was determined for all three analytes. Precision and accuracy of the method were 0.4–5.6 and 1.6–4.5% for sulindac, 2.3–5.6 and 1.4–5.3% for sulindac sulfone and 2.5–4.3 and 0.8–2.8% for sulindac sulfide, respectively.  相似文献   

5.
A simple, selective and sensitive high-performance liquid chromatographic method with spectrophotometric detection was developed for the determination of antihyperglycemic agent metformin in human plasma using a novel sample extraction procedure. Liquid-liquid extraction of metformin and ranitidine (as internal standard) from plasma samples was performed with 1-butanol/n-hexane (50:50, v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a silica column (250 mmx4.6 mm, 5 microm) under isocratic elution with acetonitrile-40 mM aqueous sodium dihydrogen phosphate (25:75, v/v), pH 6. The limit of quantification (LOQ) was 15.6 ng/ml and the calibration curves were linear up to 2000 ng/ml. The mean absolute recoveries for metformin and internal standard using the present extraction procedure were 98 and 95%, respectively. The intra- and inter-day coefficient of variation and percent error values of the assay method were all less than 8.3%.  相似文献   

6.
A column-switching high-performance liquid chromatography (HPLC) method for the determination of aloesin in rat plasma using column-switching and ultraviolet (UV) absorbance detection is described. Plasma was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with a six-port switching valve. The determination of aloesin was accurate and repeatable, with a limit of quantitation of 10 ng/ml in plasma. The standard calibration curve for aloesin was linear (r=0.998) over the concentration range of 10–1000 ng/ml in rat plasma. The intra- and inter-day assay variabilities of aloesin ranged from 1.0 to 4.7% and 1.1 to 8.8%, respectively. This highly sensitive and simple method has been successfully applied to a pharmacokinetic study after oral administration of aloesin to rats.  相似文献   

7.
A simple high-performance liquid chromatographic procedure was developed for the determination of ranitidine in human plasma. The method entailed direct injection of the plasma samples after deproteination using perchloric acid. The chromatographic separation was accomplished with an isocratic elution using mobile phase consisting of 21 mM disodium hydrogen phosphate–triethylamine-acetonitrile (1000:60:150, v/v), pH 3.5. Analyses were run at a flow-rate of 1.3 ml/min using a μbondapak C18 column and ultraviolet detection at a wavelength of 320 nm. The method was specific and sensitive, with a quantification limit of approximately 20 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 96%, while the within- and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The linearity was assessed in the range of 20–1000 ng/ml plasma, with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

8.
We studied the use of high-performance liquid chromatography (HPLC) with spectrofluorometric detection, using a solid-phase extraction for a simple, rapid and sensitive determination of plasma carvedilol levels in rats. Extracted aliquots were analyzed by HPLC, using a reversed-phase octadecyl silica column. The analytical mean recovery of carvedilol added to the blank plasma was 94.2%. The detection limit was 3.6 ng/ml in the plasma. The reproducibilities (C.V.) were 2.7–7.5% for the within-day assay, and 2.6–7.4% for the between-day assay, indicating that the method was effective for the determination of carvedilol plasma levels.  相似文献   

9.
A gas chromatographic–mass spectrometric method was developed for the determination of residues of clenbuterol in bovine urine. The method involves a simple cation-exchange clean-up and concentration of clenbuterol in the acidified urine, followed by ethyl acetate extraction. The analyte is determined as the di-trimethylsilyl derivative and quantitated against an internal standard of penbutolol. Using a 5-ml sample of urine, a detection limit of 0.07 ng/ml can be achieved with recoveries close to 100% for fortification levels of 0.2 and 1 ng/ml. By increasing the sample volume to 50 ml, a detection limit below 0.01 ng/ml was achievable with recovery averaging 70%. The coefficient of variation of the assay ranged from 15% at 0.01 ng/ml (50-ml sample) to 6% at 1 ng/ml (5-ml sample). It was demonstrated that the method can detect the presence of clenbuterol in bovine urine at sub-ppb (ng/ml) levels using low resolution GC–MS with electron impact (EI) ionization.  相似文献   

10.
A high-performance capillary electrophoresis (HPCE) assay method for the quantitation of S-(+)- and R-(−)-ondansetron in human serum was developed. Resolution was achieved using 15 mM heptakis-(2, 6-di-O-methyl)-β-cyclodextrin (DM-β-CD) in 100 mM phosphate buffer (pH 2.5). A 72-cm untreated fused-silica capillary, at a constant voltage of 20 kv, was used for the analysis. A 0.03-mM cationic detergent was used as a buffer additive to decrease the adsorption of endogenous substances onto the silica wall. The analytes of interest were isolated from endogenous substances using a solid-phase extraction procedure. The cyanopropyl cartridge gave good recoveries in excess of 85% for both S-(+)- and R-(−)-ondansetron, without any interferences. To decrease the limits of detection of the analytes, an on-capillary sample concentration technique was employed. The detection limit was 10 ng/ml using 2 ml of serum and the limit of quantitation was 15 ng/ml. The calibration curve was linear over a range of 15–250 ng/ml, with procainamide as the internal standard, and the coefficients of determination obtained were greater than 0.999 (n=3). Precision and accuracy of the method were 2.76–5.80 and 2.10–5.00%, respectively, for S-(+)-ondansetron, and 3.10–6.57 and 2.50–4.35%, respectively, for R-(−)-ondansetron. The HPCE method is a useful alternative to existing chiral high-performance liquid chromatographic methods.  相似文献   

11.
A fast and sensitive high-performance liquid chromatographic method for determination of azithromycin in human serum using fluorescence detection was developed. The drug and an internal standard (clarithromycin) were extracted from serum using n-hexan and subjected to pre-column derivatization with 9-fluorenylmethyl chloroformate as labeling agent. Analysis was performed on a phenyl packing material column with sodium phosphate buffer containing 2 ml/l triethylamine (pH 5.9) and methanol (29:71, v/v) as the mobile phase. The standard curve was linear over the range of 10-500 ng/ml of azithromycin in human serum. The means between-days precision were from 13.3% (for 10 ng/ml) to 2% (500 ng/ml) and the within-day precision from 11.9 to 1.7% determined on spiked samples. The accuracy of the method was 100.7-107.2% (between days) and 100.3-107.8% (within day). The limit of quantification was 10 ng/ml. This method was applied in a bioequivalence study of four different azithromycin preparations in 12 healthy volunteers.  相似文献   

12.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

13.
An improved method for the determination of ethyl glucuronide (EtG) in human serum and urine was developed using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS). EtG was isolated from serum and urine using aminopropyl SPE columns after deproteination with perchloric acid and hydrochloric acid, respectively. The chromatographic separation was performed on a DB 1701 fused-silica column. At a signal-to-noise ratio of 3:1, a quantification limit of 173 and 560 ng/ml and a detection limit of 37 and 168 ng/ml could be determined for serum and urine, respectively. This indicates high specificity and sensitivity of the described method. The mean absolute recovery was 85%, while intra- and inter-day precision of the assay were all less than 7.5%. The linearity of the calibration curves was satisfying as indicated by correlation coefficients of >0.993. The presented method provides the basis for determination and identification of EtG in human serum and urine samples in a low-concentration range for monitoring alcohol consumption during treatment for alcohol dependence and comorbid alcohol abuse of psychotherapy patients.  相似文献   

14.
A single-step qualitative rapid test for the determination of prostate-specific antigen (PSA) in samples of human blood serum by immunochromatography using a complex of colloidal gold with monoclonal antibodies to PSA as the detection agent was developed. The determination limit for PSA in serum blood samples is 10 ng/ml; the analysis time, 15–25 min; the sensitivity of the method, 100%; and its specificity, 92.5%.  相似文献   

15.
Three high-performance liquid chromatographic methods are described for the detection of the novel antifolate anticancer drug (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolate (lometrexol): one with fluorometric detection and two with detection by UV absorbance. An assay for plasma lometrexol using UV detection (288 nm) and reversed-phase chromatography was developed, with a quantitation limit of 0.2 μg/ml and linearity up to 10 μg/ml. This assay was modified for measurement of lometrexol in urine, with a quantitation limit of 2 μg/ml and linearity up to 25 μg/ml. An alternative assay for plasma lometrexol using derivatization and fluorescence detection (excitation at 325 nm, emission at 450 nm) was also developed, which proved twenty-fold more sensitive (quantitation limit of 10 ng/ml) than the UV assay, and which was linear up to 250 ng/ml. The fluoremetric method requires sample oxidation with manganese dioxide prior to analysis, and uses ion-pair chromatography with tetramethylammonium hydrogensulphate as an ion-pair reagent. All assays use a similar preliminary solid-phase extraction method (recovery as assessed by UV absorption >73%), with C10-desmethylene lometrexol added for internal standardisation. Each assay is highly reproducible (inter-assay precision in each assay is <10%). Applicability of the fluorescence-based assay to lometrexol in plasma and the UV-based assay lometrexol in urine is demonstrated by pharmacokinetic studies in patients treated as part of a Phase I clinical evaluation of the drug.  相似文献   

16.
A method for the determination of amitriptyline-N-oxide, amitriptyline and nortriptyline in serum and plasma has been developed. After extraction from serum or plasma the drugs were analysed by high-performance liquid chromatography.The detection limit was 10 ng/ml (2 ml serum or plasma actually used). The coefficient of variation for all three compounds was below 10%.Amitriptyline-N-oxide was found in rat plasma after an oral dose (10 mg/kg) of amitriptyline-N-oxide.  相似文献   

17.
A specific high-performance liquid chromatographic-atmospheric pressure chemical ionization tandem mass spectrometric assay for the quantitative determination of β-tigogenin cellobioside in human serum is described. Serum cleanup and acetylation of the analyte were required to achieve the desired lower limit of quantification, 10 ng/ml. The precision of the assay was better than 13% over a serum concentration range of 10–500 ng/ml.  相似文献   

18.
A simple high-performance liquid chromatographic method using ultraviolet detection was developed for the determination of metformin in human plasma. The method entailed direct injection of the plasma sample after deproteination using perchloric acid. The mobile phase comprised 0.01 M potassium dihydrogen orthophosphate (pH 3.5) and acetonitrile (60:40, v/v). Analyses were run at a flow-rate of 1.0 ml/min with the detector operating at a detection wavelength of 234 nm. The method is specific and sensitive, with a quantification limit of approximately 60 ng/ml and a detection limit of 15 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery value was about 97%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The calibration curve was linear over a concentration range of 62.5–4000 ng/ml.  相似文献   

19.
A new high-performance liquid chromatographic method for the simultaneous determination of indinavir, saquinavir and ritonavir in human plasma is described. Quantitative recovery following liquid–liquid extraction with diethyl ether from 500 μl of human plasma was achieved. Subsequently, the assay was performed with a linear gradient starting at 67 mM potassium dihydrogenphosphate–acetonitrile (65:35 to 40:60, v/v) as a mobile phase, a Phenomenex C18 column and UV detection at 240 and 258 nm, respectively. Linear standard curves were obtained for concentrations ranging from 75 to 20 000 ng/ml for indinavir, from 10 to 6000 ng/ml for saquinavir, and from 45 to 30 000 ng/ml for ritonavir. The calculated intra- and inter-day coefficients of variation were below 6%.  相似文献   

20.
A sensitive method for the determination of Delta(9)-tetrahydrocannabinol and its metabolites, 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid and 11-hydroxy-Delta(9)-tetrahydrocannabinol, in rat and guinea pig plasma was developed using high-performance liquid chromatographic separation with electrospray ionization mass spectrometry detection and a simple liquid-liquid extraction technique. The mean recoveries for Delta(9)-tetrahydrocannabinol, 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid, and 11-hydroxy-Delta(9)-tetrahydrocannabinol were 96, 92, and 85%, respectively. The lower limit of quantification (LLOQ) for all three compounds was 5 ng/ml and the limit of detection (LOD) was 2 ng/ml. This assay method utilizes the increased sensitivity and selectivity of mass spectrometric (MS) detection and a simple extraction step for the determination of Delta(9)-tetrahydrocannabinol and its metabolites in plasma, and thus yields a more efficient pharmacokinetic analysis method than has previously been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号