首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to acquire structurally informative daughter ion spectra for individual peptides undergoing separation and analysis by continuous flow fast atom bombardment (CF FAB) is demonstrated. To illustrate the potential of this methodology, tryptic and chymotryptic digests of the 29-residue peptide glucagon were analyzed by CF FAB using mass spectrometric and tandem mass spectrometric detection in consecutive analyses. Daughter ion spectra were recorded using B/E linked scans for the major hydrolysis products observed by liquid chromatography/mass spectrometry. The peptide mixtures were separated by gradient capillary high-performance liquid chromatography with the FAB matrix being added post-column using a coaxial flow interface between the column and flow probe. The entire effluent (3 microl min(-1)) was sampled by the mass spectrometer. Results obtained using less than 300 pmol of digested glucagon indicated several advantages to tandem mass spectrometric detection including the ability to confirm identities for products of enzymatic digestion and the potential use of this method for tandem sequence analysis of peptide mixtures.  相似文献   

2.
This paper reports on the selectivity behaviour of tryptic peptides on a Cu(2+)-loaded immobilised metal ion affinity chromatography (IMAC) support. Ovalbumin was chosen as a model protein for investigation of the selection and separation of histidine-containing peptides by IMAC off-line coupled with capillary electrophoresis and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF). Two of five histidine-containing peptides in addition to some non-histidine-containing peptides from a tryptic digest of ovalbumin were captured by IMAC. To separate and purify the selected peptides, the IMAC sample was analysed by capillary zone electrophoresis (CZE). The sample was not separated by capillary zone electrophoresis, therefore, micellar electrokinetic chromatography (MEKC) using 10-75 mM SDS was used. Analysis of IMAC sample by MEKC, using low concentrations of SDS (10 mM) was characterised by MALDI-TOF. When using SDS at 75 mM, the migration times of reversed-phase fractions of the IMAC sample, were used to identify the peaks. One of the two selected histidine-containing peptides with two histidine residues was identified, analysing the sample by CZE or MEKC.  相似文献   

3.
A partial filling micellar electrokinetic capillary chromatography (PF-MEKC) method with a mixed micelle system composed of a zwitterionic surfactant named 3-(N,N-dimethylhexadecylammonium)propanesulfonate (PAPS) and a nonionic surfactant polyethylene glycol dodecyl ether (Brij 35) for peptide mapping is described. The method was demonstrated by the separation of tryptic digestion of bovine serum albumin (BSA). The optimal mixed micelle solution was 50 mM NH(4)OH-HCOOH buffer (pH 2.0) containing 32 mM PAPS and 0.6% (m/v) Brij 35. It was found that the mixed micelle system permitted a highly selective separation of the tryptic digestion. The high separation selectivity was probably due to the ion-pairing interaction between the zwitterionic surfactant molecules and the peptides.  相似文献   

4.
Collagen type-I CNBr peptides were separated under acidic conditions by capillary electrophoresis. Separation conditions were: 100 mM phosphate buffer pH 2.5, 50 cm × 50 μm capillary (placed in a cartridge), 8 kV, running time 30–45 min, detection by UV at 200 nm. The peptides were separated strictly by their molecular mass and the overall pattern was well comparable to RP-HPLC separations of these analytes. It is proposed that the separation mechanism may involve hydrophobic sorptions to the capillary wall.  相似文献   

5.
An analytical investigation of a new peptide family, the human galanins and their fragments, was carried out by reversed-phase HPLC, capillary zone electrophoresis (CZE) at different pH values and micellar electrokinetic capillary chromatography (MECC) in phosphate-borate-sodium dodecyl sulphate buffer. None of the methods seems to be superior to the others. The complementary nature of the electrophoretic methods is obvious when the profiles of peptides are compared; impurities not separated by HPLC are separated by CZE or MECC and vice versa. With these three different separation methods, a more complex analytical control of the synthetic work can be achieved.  相似文献   

6.
A novel scheme based on multiplexed capillary electrophoresis (CE) has been developed for high-throughput, low-cost and comprehensive peptide mapping. Orthogonal peptide maps of the protein of interest were obtained by using multiple reaction conditions with three different enzymes (trypsin, pepsin, and chymotrypsin), and multiple separation conditions with six zone electrophoresis buffers and two micellar electrokinetic chromatography (MEKC) buffers. Fifteen nanoliters of two protein samples (beta-lactoglobulin A and beta-lactoglobulin B) were separately mixed on-column and digested independently at 37 degrees C for 10 min to produce peptides in a 20-capillary system. The resulting peptides were detected simultaneously at 214 nm by a photodiode array detector. The overall analysis time from reaction to detection was about 40 min.  相似文献   

7.
A novel two-dimensional (2D) separation system for proteins was reported. In the system, a piece of dialysis hollow-fiber membrane was employed as the interface for on-line combination of capillary isoelectric focusing (CIEF) and capillary non-gel sieving electrophoresis (CNGSE). The system is similar equivalent to two-dimensional polyacrylamide gel electrophoresis (2D PAGE), by transferring the principal of 2D PAGE separation to the capillary format. Proteins were focused and separated in first dimension CIEF based on their differences in isoelectric points (pIs). Focused protein zones was transferred to the dialysis hollow-fiber interface, where proteins hydrophobically complexed with sodium dodecyl sulfate (SDS). The negatively charged proteins were electromigrated and further resolved by their differences in size in the second dimension CNGSE, in which dextran solution, a replaceable sieving matrix instead of cross-linked polyacrylamide gel was employed for size-dependent separation of proteins. The combination of the two techniques was attributed to high efficiency of the dialysis membrane interface. The feasibility and the orthogonality of the combined CIEF-CNGSE separation technique, an important factor for maximizing peak capacity or resolution elements, were demonstrated by examining each technique independently for the separation of hemoglobin and protein mixtures excreting from lung cancer cells of rat. The 2D separation strategy was found to greatly increase the resolving power and overall peak capacity over those obtained for either dimension alone.  相似文献   

8.
Enzymatic digests of proteins isolated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) were separated by capillary high-performance liquid chromatography (HPLC). The column eluate was split to an electrospray mass spectrometer on one side and to both a UV detector and a microblotter on the other side. Using the microblotter, the peptides eluted from the column were collected directly onto a polyvinylidene difluoride (PVDF) membrane for Edman sequencing. Thus, a peptide mass map from the mass spectrometric analysis and a prepared PVDF membrane for subsequent Edman sequencing were generated in a single experiment. The addition of molecular mass information to the blotted LC eluate is useful for determining the most important peaks to undergo Edman sequencing. Coupling the capillary HPLC with a microblotter to electrospray mass spectrometry provides an integrated system for separation, collection, and structural analysis of protein digests. It provides high levels of sensitivity, recovery, and convenience for protein characterization. Proteins loaded onto SDS–PAGE at low picomole levels can be analyzed by the new integrated system.  相似文献   

9.
We report the use of microbore reverse-phase high performance liquid chromatography connected on-line to an electrospray mass spectrometer for the separation/detection of peptides derived by proteolytic digestion of proteins separated by polyacrylamide gel electrophoresis. A small fraction (typically 10% of the total) of the peptides eluting from the column was diverted through a flow-splitting device into the ion source of the mass spectrometer, whereas the majority of the peptide samples was collected for further analyses. We demonstrate the feasibility of obtaining reproducible peptide maps from submicrogram amounts of protein applied to the gel and good correlation of the signal detected by the mass spectrometer with peptide detection by UV absorbance. Furthermore, independently verifiable peptide masses were determined from subpicomole amounts of peptides directed into the mass spectrometer. The method was used to analyze the 265-kDa and the 280-kDa isoforms of the enzyme acetyl-CoA carboxylase isolated from rat liver. The results provide compelling evidence that the two enzyme isoforms are translation products of different genes and suggest that these approaches may be of general utility in the definitive comparison of protein isoforms. We furthermore illustrate that knowledge of peptide masses as determined by this technique provides a major advantage for error-free data interpretation in chemical high-sensitivity peptide sequence analysis.  相似文献   

10.
A novel two-dimensional (2D) separation method, which hyphenated micellar electrokinetic capillary chromatography (MEKC) and capillary zone electrophoresis (CZE), was developed for analysis of flavonoids in Leonurus cardiaca. The Leonurus cardiaca sample was separated and purified in first dimension by MEKC. Then only a selected portion of the first dimension separation was transferred into the second dimension by pressure. Finally, the zone of flavonoids was separated by CZE. As the key to successful hyphenation of MEKC and CZE, an analyte focusing by micelle collapse (AFMC) concentration method was employed between the two dimensions to release analytes from the micelle interior to a liquid zone and to overcome the sample zone diffusion caused by mobilization pressure. The whole heart-cut 2D separation process can be performed in a conventional CE analyzer. The relative standard deviation of peak height, peak area and migration time were in the range of 2.3-4.2%, 1.5-3.8% and 3.6-5.5%, respectively, and detection limits (S/N=3) were 15-55 ng/mL. The new methodology was applied with success for the flavonoids separation of Leonurus cardiaca.  相似文献   

11.
We describe a simple, fast, sensitive, and nonisotopic bioanalytical technique for the detection of tyrosine-phosphorylated peptides and the determination of sites of protein tyrosine phosphorylation. The technique employs a protein tyrosine phosphatase micro enzyme reactor coupled on-line to either capillary electrophoresis or liquid chromatography and electrospray ionization mass spectrometry instruments. The micro enzyme reactor was constructed by immobilizing genetically engineered, metabolically biotinylated human protein tyrosine phosphatase beta onto the inner surface of a small piece of a 50-microns inner diameter, 360-microns outer diameter fused silica capillary or by immobilization of the phosphatase onto 40-90-microns avidin-activated resins. By coupling these reactors directly to either a capillary electrophoresis column or a liquid chromatography column, we were able to rapidly perform enzymatic dephosphorylation and separation of the reaction products. Detection and identification of the components of the reaction mixture exiting these reactors were done by mass analysis with an on-line electrospray ionization mass spectrometer. Tyrosine-phosphorylated peptides, even if present in a complex peptide mixture, were identified by subtractive analysis of peptide patterns generated with or without phosphatase treatment. Two criteria, namely a phosphatase-induced change in hydropathy and charge, respectively, and a change in molecular mass by 80 Da, were used jointly to identify phosphopeptides. We demonstrate that, with this technique, low picomole amounts of a tyrosine-phosphorylated peptide can be detected in a complex peptide mixture generated by proteolysis of a protein and that even higher sensitivities can be realized if more sensitive detection systems are applied.  相似文献   

12.
This review highlights recent progresses in capillary electrophoresis (CE) analysis of amino acid enantiomers in the last decade. Various chiral selectors including cyclodextrins (CDs), bile salts, crown ethers, cinchona alkaloids, metal-chiral amino acid complexes, macrocyclic antibiotics and proteins have been employed to separate amino acid enantiomers. In the CE analysis of amino acids, the selection of the separation mode is one of the most important issues to obtain good resolution of target enantiomers. Among several separation modes, CD-modified capillary zone electrophoresis (CD-CZE), CD electrokinetic chromatography (CDEKC), micellar EKC (MEKC), CD-modified micellar electrokinetic chromatography (CD-MEKC), capillary electrochromatography (CEC), ligand-exchange CE (LE-CE), and nonaqueous CE (NACE) have been employed to the chiral analysis of amino acids. More than 160 published research articles collected from SciFinder Scholar databases from the year 2001 described the enantioseparations of amino acids by capillary-based electrophoresis. This review provides a comprehensive table listing the CE analysis of amino acid enantiomers with categorizing by the separation modes.  相似文献   

13.
Extracts of roots Phyllanthus acidus were examined by free zone capillary electrophoresis, micellar electrokinetic chromatography (MEKC), and MEKC using the sweeping technique which involves application of a negative potential to the inlet end of the capillary and very much longer than conventional injection times. The latter technique, using a buffer of 50 mM sodium dihydrogen phosphate (pH 2) containing 80 mM sodium dodecylsulphate and 30% methanol was found to allow complete resolution of the active constituents of P. acidus, phyllanthusols A and B, from each other and from other extracted components in under 30 min. Several other components could be detected when hydrodynamic injection times of 500 s were used. The separation, combined with an appropriate extraction procedure and using an internal standard of proguanil, permitted quantification of both phyllanthusols. Calibrations were linear over the range 2-8 micrograms/mL for phyllanthusol A, and 1-4 micrograms/mL for phyllanthusol B. Within-day and day-to-day repeatability RSDs were below 10%, and the precision of extraction RSD was around 14%. The limits of quantification and detection were 0.55 and 0.24 microgram/mL, respectively.  相似文献   

14.
L. Kang  R. H. Buck 《Amino acids》1992,2(1-2):103-109
Summary Amino acids react with OPA and chiral mercaptans to give diastereomeric isoindole derivatives. The resolution of these diastereomers was investigated by micellar electrokinetic chromatography (MECC) and free solution capillary electrophoresis. MECC with SDS as micellar phase allows to separate the amino acid derivatives and to resolve the diastereomers. The separation is influenced by the amount of detergent and the organic modifier added. Capillary zone electrophoresis offers a valuable alternative to the traditional methods for amino acid analysis and enantiomer determination.  相似文献   

15.
The application of capillary electrophoresis (CE) methods in forensic toxicology for the determination of illicit and/or misused drugs in biological samples is reviewed in the present paper. Sample pretreatments and direct injection modes used in CE for analysis of drugs in biological fluids are briefly described. Besides, applications of separation methods based on capillary zone electrophoresis or micellar electrokinetic chromatography with UV absorbance detection to (i) analysis of drugs of abuse, (ii) analysis of other drugs and toxicants of potential forensic interest and (iii) for metabolism studies are reviewed. Also, alternative CE methods are briefly discussed, including capillary isotachophoresis and separation on mixed polymer networks. High sensitivity detection methods used for forensic drug analysis in biological samples are then presented, particularly those based on laser induced fluorescence. A glimpse of the first examples of application of CE–mass spectrometry in forensic toxicology is finally given.  相似文献   

16.
The preconditions are outlined for enantioselective separations in capillary electrophoresis (CE) with chiral selectors as additives to the background electrolyte. Free solution capillary electrophoresis conditions are characterised by a single solution phase. Chiral separations are reviewed by selector type (chiral ligand exchange, cyclodextrins, crown ethers, glycoproteins) with the extensive studies on cyclodextrins grouped into sections on amino acids, pharmaceuticals, and speciality chemicals, optimisation, biological fluids, and quantitative aspects. In micellar electrokinetic capillary chromatography, enantioselective discrimination occurs by partition in a two-phase system, with a chiral micellar phase as selector. Optimum separation conditions can be readily predicted for a given selector–selectand combination, and absolute values of binding constants determined by CE. Advantages of CE in comparison with HPLC using a chiral stationary phase include robust, rapid assays and the use of small volumes of aqueous solutions; disadvantages include less favourable detection limits. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The separation power of capillary zone electrophoresis was examined using highly purified and well-characterized biosynthetic human insulin, growth hormone, their derivatives, and related proteins. Mixtures of proteins were chosen to illustrate practical applications of this technique. Proteins differing slightly in structure, but equivalent in net charge, were not completely separated. Degradation of insulin by dilute acid treatment was followed by capillary zone electrophoresis, native polyacrylamide gel electrophoresis, and reversed-phase liquid chromatography. Excellent correlation was observed between these techniques. Simple equipment requirements and analysis times on the order of 10 min make capillary zone electrophoresis attractive for analytical protein separations.  相似文献   

18.
A capillary electrophoretic enzyme immunoassay with electrochemical detection (CE-EIA-ED) using a noncompetitive format has been developed. In this method, antigen (Ag) reacts with an excess amount of horseradish peroxidase (HRP)-labeled antibody (Ab*). The free Ab* and the bound Ag-Ab* complex produced in the solution are separated by capillary zone electrophoresis in a separation capillary. Then they catalyze enzyme substrate 3,3',5,5'-tetramethylbenzide (TMB(Red)) and H(2)O(2) in a reaction capillary following the separation capillary. The reaction product, TMB(Ox), can be determined using amperometric detection on a carbon fiber microdisk bundle electrode at the outlet of the reaction capillary. Due to the amplification of the enzyme, a significant amount of TMB(Ox) can be produced for detection. Therefore, the limit of detection (LOD) of CE-EIA-ED is very low. A tumor marker (CA15-3) was used as a model, in order to test the method. The concentration LOD of CA15-3 is 0.024 U/ml, which corresponds to a mass detection limit of 1.3x10(-7) U.  相似文献   

19.
High-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE) were used in biodegradation kinetic studies. This paper describes a rapid penciclovir separation using CZE with detection limits comparable to HPLC. The ionic-strength mediated stacking technique was employed while good resolution was maintained. With a shorter analysis time, comparable detection limits and no organic solvent consumption, CZE is a better method for penciclovir biodegradation studies than conventional reversed-phase HPLC (RP-HPLC).  相似文献   

20.
Lee YH  Kim MS  Choie WS  Min HK  Lee SW 《Proteomics》2004,4(6):1684-1694
Recently, various chemical modifications of peptides have been incorporated into mass spectrometric analyses of proteome samples, predominantly in conjunction with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), to facilitate de novo sequencing of peptides. In this work, we investigate systematically the utility of N-terminal sulfonation of tryptic peptides by 4-sulfophenyl isothiocyanate (SPITC) for proteome analysis by capillary reverse-phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). The experimental conditions for the sulfonation were carefully adjusted so that SPITC reacts selectively with the N-terminal amino groups, even in the presence of the epsilon-amino groups of lysine residues. Mass spectrometric analyses of the modified peptides by cRPLC/MS/MS indicated that SPITC derivatization proceeded toward near completion under the experimental conditions employed here. The SPITC-derivatized peptides underwent facile fragmentation, predominantly resulting in y-series ions in the MS/MS spectra. Combining SPITC derivatization and cRPLC/MS/MS analyses facilitated the acquisition of sequence information for lysine-terminated tryptic peptides as well as arginine-terminated peptides without the need for additional peptide pretreatment, such as guanidination of lysine amino group. This process alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI MS experiments. We will discuss the utility of the technique as a viable method for proteome analyses and present examples of its application in analyzing samples having different levels of complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号