首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.  相似文献   

3.
4.
Li B  Chu X  Gao M  Xu Y 《Cellular immunology》2011,272(1):61-70
The retroviral-vector-targeted CD59 gene (pSUPER-siCD59) was constructed and transfected into breast cells (MCF-7). The results demonstrated that the retroviral vector-mediated RNAi successfully suppressed human CD59 gene. The expression of CD59 decreased at both mRNA and protein levels. Knockdown of CD59 abrogated its protective effect on complement-mediated cytolysis. Fas and caspase-3 were remarkably upregulated, which induced apoptosis and tumor growth suppression in MCF-7 cells. In addition, overexpression of CD59 promoted the proliferation of MCF-7 cells and inhibited anti-apoptotic Bcl-2 expression. In conclusion, CD59 may be a promising target in the gene therapy of breast cancer.  相似文献   

5.
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called tumor-educated platelets. Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.  相似文献   

6.
Breast cancer patients with high expression of aldehyde dehydrogenases (ALDHs) cell population have higher tolerability to chemotherapy since the cells posses a characteristic of breast cancer stem cells (BCSCs) that are resistant to conventional chemotherapy. In this study, we found that the ALDH-positive cells were higher in CD44+CD24 and CD44+CD24ESA+BCSCs than that in both BT549 and MDA-MB-231 cell lines but microRNA-7 (miR-7) level was lower in CD44+CD24 and CD44+CD24ESA+BCSCs than that in MDA-MB-231 cells. Moreover, miR-7 overexpression in MDA-MB-231 cells decreased ALDH1A3 activity by miR-7 directly binding to the 3′-untranslated region of ALDH1A3; while the ALDH1A3 expression was downregulated in MDA-MB-231 cells, the expressions of CD44 and Epithelium Specific Antigen (ESA) were reduced along with decreasing the BCSC subpopulation. Significantly, enforced expression of miR-7 in CD44+CD24ESA+BCSC markedly inhibited the BCSC-driven xenograft growth in mice by decreasing an expression of ALDH1A3. Collectively, the findings demonstrate the miR-7 inhibits breast cancer growth via suppressing ALDH1A3 activity concomitant with decreasing BCSC subpopulation. This approach may be considered for an investigation on clinical treatment of breast cancers.  相似文献   

7.
8.
Cancer stem cells promote tumorigenesis and progression of hepatocellular carcinoma (HCC). Recently, emerging evidence indicates tumor-associated macrophages (TAMs) play an important role in tumor progression. However, TAMs often occurs with unknown mechanisms. As an important mediator in intercellular communications, exosomes secreted by host cells mediate the exchange of genetic materials and proteins, which involves tumor aggressiveness. The aim of the study was to investigate whether exosomes derived from TAMs mediate stem cell properties in HCC. TAMs were isolated from the tissues of HCC. microRNA (miRNA) expression profiles of TAMs were analyzed using miRNA microarray. In vitro cell coculture was further conducted to investigate the crosstalk between TAMs and tumor cells mediated by TAMs exosomes. In this study, we showed that TAMs exosomes promote HCC cell proliferation and stem cell properties. Using miRNA profiles assay, we identified significantly lower levels of miR-125a and miR-125b in exosomes and cell lysate isolated from TAMs. Functional studies revealed that the HCC cells were treated with TAM exosomes or transfected with miR-125a/b suppressed cell proliferation and stem cell properties by targeting CD90, a stem cell marker of HCC stem cells. The study indicated that miR-125a/b targeting CD90 played important roles in cancer stem cells of HCC.  相似文献   

9.
The growth dependence of many breast cancers on oestrogen has been exploited therapeutically by oestrogen deprivation, but almost all patients eventually develop resistance largely by unknown mechanisms. Wild-type (WT) MCF-7 cells were cultured in oestrogen-deficient medium for 90 weeks in order to establish a long-term oestrogen-deprived MCF-7 (LTED) which eventually became independent of exogenous oestrogen for growth. After 15 weeks of quiescence (LTED-Q), basal growth rate increased in parallel with increasing oestrogen sensitivity. While 10−9 M oestradiol (E2) maximally stimulated WT growth, the hypersensitive LTED (LTED-H) were maximally growth stimulated by 10−13 M E2. By week 50, hypersensitivity was apparently lost and the cells became oestrogen independent (LTED-I), although the pure antioestrogen ICI182780 still inhibited cell growth and reversed the inhibitory effect of 10−9 M E2 at 10−12 to 10−7 M. Tamoxifen (10−7 to 10−6 M) had a partial agonist effect on WT, but had no stimulatory effect on LTED. Whilst LTED cells have a low progesterone receptor (PgR) expression in all phases, oestrogen receptor (ER) a expression was, on average, elevated five- and seven-fold in LTED-H and LTED-I, respectively, and serine118 was phosphorylated. ERβ expression was up-regulated and the levels of insulin receptor substrate 1 (IRS-1) remained low throughout all phases. The levels of RIP140 mRNA appeared to decrease to approximately 50% of the WT message in LTED-Q and remained constant into the hypersensitive phase. No significant changes were observed in the expression of SUG-1, TIF-1 and SMRT in LTED. The overall changes in nuclear receptor interacting proteins do not appear to be involved in the hypersensitivity. Thus, the resistance of these human breast cancer cells to oestrogen-deprivation appears to be due to acquired hypersensitivity which may be explained in part by increased levels of and phosphorylated ER.  相似文献   

10.
Recent accumulating evidence has supported the notion that tumors have hierarchically organized heterogeneous cell populations and a small subpopulation of cells, termed cancer stem cells (CSCs), are responsible for tumor initiation, maintenance as well as drug resistance. Therefore, targeting the CSCs along with the other cancer cells has been the most important topic during the last decade. In the present study, we evaluated the cytotoxic activity of trans-[PtCl2(2-hepy)2] [2-hepy = 2-(2-hydroxyethyl) pyridine] complex and the mechanism of cell death in breast CSCs. Stemness markers, Oct-4 and Sox2, were determined in mammospheres by western blotting. Cytotoxicity was assessed using the ATP viability assay. Cell death was fluorescently visualized and further confirmed by flow cytometry as well as gene expression analysis. The Pt(II) complex significantly reduced the cell viability, prevented mammosphere formation and disrupted mammosphere structures in a dose-dependent manner (0–100 μM). The mode of cell death was apoptosis and it was shown by the presence of caspase 3/7 activity, Annexin V-FITC positivity, decreased mitochondrial membrane potential and increased expressions of pro-apoptotic genes (TNFRSF10A and HRK). Interestingly, necroptosis was also observed by the evidence of increased MLKL expression. In conclusion, the Pt(II) complex seems to be a highly promising anticancer compound due to its promising cytotoxic activity on CSCs. Therefore, it deserves in vivo further studies for the proof-of-concept.  相似文献   

11.
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.  相似文献   

12.
吴海歌  吴晨  姚子昂  高晨慧  李倩 《生命科学》2014,(10):1067-1072
肿瘤干细胞是指存在于肿瘤组织中的具有干细胞特性,即能够多向分化和自我更新的一类细胞群。随着肿瘤干细胞概念的提出,乳腺癌干细胞成为当今科研领域的一个研究热点。因此,了解如何分选乳腺癌干细胞及如何维持其"干性"对治疗及预防乳腺癌具有至关重要的意义。主要从乳腺癌干细胞分选、相关信号通路、上皮-间充质转换(EMT)等方面进行综述。  相似文献   

13.
Epidemiological studies suggest that dietary polyunsaturated fatty acids (PUFA) may influence breast cancer progression and prognosis. In order to study potential mechanisms of action of fatty acid modulation of tumor growth, we studied, in vitro, the influence of n-3 and n-6 fatty acids on proliferation, cell cycle, differentiation and apoptosis of MCF-7 human breast cancer cells. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) inhibited the MCF-7 cell growth by 30% and 54%, respectively, while linoleic acid (LA) had no effect and arachidonic acid (AA) inhibited the cell growth by 30% (p < 0.05). The addition of vitamin E (10uM) to cancer cells slightly restored cell growth. The incubation of MCF-7 cells with PUFAs did not alter the cell cycle parameters or induce cell apoptosis. However, the growth inhibitory effects of EPA, DHA and AA were associated with cell differentiation as indicated by positive Oil-Red-O staining of the cells. Lipid droplet accumulation was increased by 65%, 30% and 15% in the presence of DHA, EPA and AA, respectively; (p < 0.05). These observations suggest that fatty acids may influence cellular processes at a molecular level, capable of modulating breast cancer cell growth.  相似文献   

14.
15.
Breast cancer, like many other cancers, is believed to be driven by a population of cells that display stem cell properties. Recent studies suggest that cancer stem cells (CSCs) are essential for tumor progression, and tumor relapse is thought to be caused by the presence of these cells. CSC-targeted therapies have also been proposed to overcome therapeutic resistance in breast cancer after the traditional therapies. Additionally, the metabolic properties of cancer cells differ markedly from those of normal cells. The efficacy of metabolic targeted therapy has been shown to enhance anti-cancer treatment or overcome therapeutic resistance of breast cancer cells. Metabolic targeting of breast CSCs (BCSCs) may be a very effective strategy for anti-cancer treatment of breast cancer cells. Thus, in this review, we focus on discussing the studies involving metabolism and targeted therapy in BCSCs.  相似文献   

16.
Breast cancer is a global public health problem and the most frequent cause of cancer death among women. Mammary carcinogenesis is driven not only by genetic alterations but also by epigenetic disturbances. Because epigenetic marks are potentially reversible they represent promising molecular targets for breast cancer prevention interventions. Selenium is a promising anti-breast cancer trace element that has shown the modulation of DNA methylation and histone post-translational modifications in other malignancies. This study aimed to evaluate the effects of selenium compounds [methylseleninic acid (MSA) and selenite] on cell proliferation and death, expression of the tumor suppressor gene RASSF1A and epigenetic marks in MCF-7 human breast adenocarcinoma cells. Treatment with MSA or selenite markedly inhibited (P < 0.05) in a dose-dependent manner the proliferation of MCF-7 cells. MSA induced (P < 0.05) G2/M cell arrest while selenite presented the opposite effect. Regarding cell death induction, MSA acted mainly by inducing apoptosis (P < 0.05), while selenite only induced necrosis (P < 0.05). Furthermore selenite, but not MSA, markedly induced (P < 0.05) cytotoxicity and increased (P < 0.05) RASSF1A expression. Both selenium compounds inhibited (P < 0.05) DNMT1 expression. MSA decreased (P < 0.05) H3K9me3 and increased (P < 0.05) H4K16ac, while selenite decreased (P < 0.05) this latter histone mark. To the best of our knowledge this is the first report showing that selenite and MSA modulate epigenetic marks specifically in breast cancer cells. Our data reinforce the anti-breast cancer potential of selenium that is dependent on its chemical form. Furthermore the data show that epigenetic mechanisms represent relevant molecular targets involved in selenium inhibitory effects in breast cancer cells.  相似文献   

17.
肿瘤干细胞研究进展   总被引:1,自引:0,他引:1  
瞿素  胡云章 《生命科学》2003,15(5):259-261,265
肿瘤是危害人类健康的重大疾病。肿瘤的起源,即肿瘤的去分化起源和肿瘤的干细胞起源一直是有争议的,而随着干细胞研究的深入,越来越多的实验结果证实肿瘤起源于干细胞的观点。肿瘤干细胞不仅能够从血液系统恶性肿瘤中分离,乳腺癌实体瘤干细胞的成功分离也证实了肿瘤干细胞的存在。针对细胞特异的表面标记,可以靶向消灭肿瘤干细胞,治疗肿瘤。  相似文献   

18.
Breast cancer is the most common female cancer. However, the known effective specific biomarkers for breast cancer are still scarce. Abnormal membrane proteins serve as ideal biomarkers for disease diagnoses, therapeutics and prognosis. Thus aptamers (single-stranded oligonucleotide molecules) with molecular recognition properties can be used as efficient tools to sort cells based on differences in cell surface architecture between normal and tumor cells. In this study, we aimed to screen specific aptamer against MCF-7 human breast cancer cells. Cell-SELEX process was performed to isolate aptamers from a combinatorial single-stranded nucleic acid library that selectively targeting surface proteins of MCF-7 cells in contrast with MCF-10A human mammary epithelial cells. The process was repeated until the pool was enriched for sequences that specifically recognizing MCF-7 cells in monitoring by flow cytometry. Subsequently, the enriched pool was cloned into bacteria, and positive clones were sequenced to obtain individual sequences. Representative sequences were chemically synthesized and evaluated their binding affinities to MCF-7 cells. As a result, an aptamer S1 was finally identified to have high binding affinity with equilibrium dissociation constant (Kd) value of 29.9 ± 6.0 nM. FAM-labeled aptamer S1 induced fluorescence shift in MCF-7 cells but not in MCF-10A human mammary epithelial cells, or MDA-MB-453 and MDA-MB-231 human breast cancer cells. Furthermore, result of cell imaging observed from laser confocal fluorescence microscope showed that MCF-7 cells exhibited stronger fluorescence signal resulted from Cy5-labeled aptamer S1 than MCF-10A cells. The above findings suggested that S1 may be a specificity and selectivity aptamer for MCF-7 cells and useful for the breast cancer detection and diagnosis.  相似文献   

19.
Early detection of colorectal cancer and monitoring the progress in colon carcinogenesis stages is essential to reduce mortality. Therefore, there is continuous search for noninvasive biomarkers with high stability and good sensitivity and specificity. miRNAs have attracted attention as promising biomarkers as they are stably expressed in circulation. The aim of our study is to evaluate the aberrant expression of circulating miRNAs during the stepwise progress of colitis-associated colon cancer. This was accomplished through assessing the expression levels of five miRNAs (miR-141, miR-15b, miR-17-3p, miR-21, and miR-29a) in serum and their corresponding tissue samples through the different cycles of colorectal carcinogenesis cascade using the azoxymethane/dextran sulfate sodium murine model. We also compared the diagnostic performance of these selected miRNAs with the conventional tumor biomarkers CEA and CA 19-9. The results of our study revealed that the expression levels of those miRNAs were dynamically changing in accordance with the tumor development state. Moreover, their aberrant expression in serum was statistically correlated with that in tissue. Our data also revealed that serum miR-15b, miR-21, and miR-29a showed the best performance in terms of diagnostic power. Our findings highlight the efficiency of these circulating miRNAs not only for early diagnostics purposes, but also for monitoring progress in the colorectal carcinogenesis process, and therefore encouraging integrating these noninvasive biomarkers into the clinical diagnostic settings beside the traditional diagnostic markers for accurate screening of the early progress of colon carcinogenesis.  相似文献   

20.
Background: There is an unmet need to identify biomarkers that directly reflect response to adjuvant radiotherapy (RT). Circulating epithelial tumor cells (CETCs) represent the liquid component of solid tumors and are responsible for metastatic relapse. CETC subsets with cancer stem cell characteristics, circulating cancer stem cells (cCSCs), play a pivotal role in the metastatic cascade. Monitoring the most aggressive subpopulation of CETCs could reflect the aggressiveness of the remaining tumor burden. There is limited data on the detection and monitoring changes in CETC and cCSC numbers during RT in early breast cancer.Methods: CETC numbers were analyzed prior to, at midterm and at the end of RT in 52 primary non-metastatic breast cancer patients. Hormone receptor status was determined in CETCs prior to and at the end of RT. For the identification of cCSCs cell suspensions from the peripheral blood of patients were cultured in vitro under conditions favoring growth of tumorspheres.Results: Hormone receptor status in CETCs before RT was comparable to that in primary tumor tissue. Prior to RT numbers of CETCs correlated with aggressiveness of primary tumors. cCSCs could be successfully identified and monitored during RT. Prior to RT patients treated with neoadjuvant chemotherapy had significantly higher numbers of CETCs and tumorspheres compared to patients after adjuvant chemotherapy. During RT, the number of CETCs decreased continuously in patients after neoadjuvant chemotherapy but not after adjuvant chemotherapy.Conclusion: Monitoring the number of CETCs and the CETC subset with cancer stem cell properties during RT may provide additional clinically useful prognostic information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号