首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population‐level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well‐studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family‐based genome‐wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome‐wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP‐based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.  相似文献   

2.
Ecological context—the biotic and abiotic environment, along with its influence on population mixing dynamics and individual susceptibility—is thought to have major bearing on epidemic outcomes. However, direct comparisons of wildlife disease events in contrasting ecological contexts are often confounded by concurrent differences in host genetics, exposure histories, or pathogen strains. Here, we compare disease dynamics of a Mycoplasma ovipneumoniae spillover event that affected bighorn sheep populations in two contrasting ecological contexts. One event occurred on the herd''s home range near the Rio Grande Gorge in New Mexico, while the other occurred in a captive facility at Hardware Ranch in Utah. While data collection regimens varied, general patterns of antibody signal strength and symptom emergence were conserved between the two sites. Symptoms appeared in the captive setting an average of 12.9 days postexposure, average time to seroconversion was 24.9 days, and clinical signs peaked at approximately 36 days postinfection. These patterns were consistent with serological testing and subsequent declines in symptom intensity in the free‐ranging herd. At the captive site, older animals exhibited more severe declines in body condition and loin thickness, higher symptom burdens, and slower antibody response to the pathogen than younger animals. Younger animals were more likely than older animals to clear infection by the time of sampling at both sites. The patterns presented here suggest that environment may not be a major determinant of epidemiological outcomes in the bighorn sheep—M. ovipneumoniae system, elevating the possibility that host‐ or pathogen‐factors may be responsible for observed variation.  相似文献   

3.
Bighorn sheep (Ovis canadensis) were once extirpated from the Black Hills region of South Dakota, U.S.A., mirroring declining populations throughout North America. Since the 1960s, several reintroductions have occurred in the Black Hills to reestablish populations, with varying success. We translocated 26 bighorn sheep from Alberta, Canada, to the Black Hills (February 2015) to restore bighorn sheep to their historic range. Due to prior examinations of cause‐specific survival, subsequent genetic diversity and disease prevalence analyses were required to evaluate success of the restoration effort. We measured a mean allelic diversity of 5.23 (SE = 0.44 [mean number of alleles]) and an observed heterozygosity of 0.71 (SE = 0.06; expected = 0.64 ± 0.05) in the translocated individuals. Translocated bighorn sheep tested negative for Mycoplasma ovipneumoniae at capture. An autogenous vaccine was administered prior to release in an attempt to safeguard the translocated bighorn sheep from infection with a strain known to be resident in adjacent bighorn sheep populations. However, the year following the translocation, a different strain of M. ovipneumoniae was associated with a pneumonia outbreak that resulted in 57.9% mortality. Our results suggest that allelic diversity and heterozygosity were sufficient for long‐term herd establishment, reducing the potential for founder effects. However, the overwhelming mortality associated with pneumonia, via the transfer of M. ovipneumoniae from an unknown source, limited the success or our reintroduction efforts. Successful attempts to restore bighorn sheep to their historic ranges must consider and mitigate potential routes for M. ovipneumoniae transmission pre‐ and post‐reintroduction.  相似文献   

4.
In some species where male mating success largely depends on intrasexual competition, males can adopt migratory or resident strategies to seek breeding opportunities. The resulting mixture of resident and migrant tactics within a population can have important ecological, genetic, and evolutionary consequences for metapopulations. Bighorn sheep Ovis canadensis males establish a linear dominance hierarchy that influences their mating tactics. Some males perform breeding migrations during the pre‐rut and rut to seek mating opportunities, but little is known about these seasonal movements. We analyzed presence/absence data for 62 marked bighorn males during six mating seasons (20–32 males/year) in the Sheep River Provincial Park, Alberta, Canada, where hunting was not allowed. On average, about half of males left their natal population to rut elsewhere. The proportion of males leaving (yearly range 15%–69%) increased as the number of resident mature males increased and the populational sex ratio decreased, with fewer females during the pre‐rut. Among those leaving the park, 24% did so in October, while the trophy sheep hunting season was open. Detailed monitoring of breeding migrations in protected populations could inform management strategies to limit evolutionary impacts of hunting, which can alter size‐dependent mortality and create artificial pressures driving changes on heritable traits.  相似文献   

5.

Background

Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently isolated from animals in natural outbreaks. Mycoplasma ovipneumoniae, epidemiologically implicated in naturally occurring outbreaks, has received little experimental evaluation as a primary agent of bighorn sheep pneumonia.

Methodology/Principal Findings

In two experiments, bighorn sheep housed in multiple pens 7.6 to 12 m apart were exposed to M. ovipneumoniae by introduction of a single infected or challenged animal to a single pen. Respiratory disease was monitored by observation of clinical signs and confirmed by necropsy. Bacterial involvement in the pneumonic lungs was evaluated by conventional aerobic bacteriology and by culture-independent methods. In both experiments the challenge strain of M. ovipneumoniae was transmitted to all animals both within and between pens and all infected bighorn sheep developed bronchopneumonia. In six bighorn sheep in which the disease was allowed to run its course, three died with bronchopneumonia 34, 65, and 109 days after M. ovipneumoniae introduction. Diverse bacterial populations, predominantly including multiple obligate anaerobic species, were present in pneumonic lung tissues at necropsy.

Conclusions/Significance

Exposure to a single M. ovipneumoniae infected animal resulted in transmission of infection to all bighorn sheep both within the pen and in adjacent pens, and all infected sheep developed bronchopneumonia. The epidemiologic, pathologic and microbiologic findings in these experimental animals resembled those seen in naturally occurring pneumonia outbreaks in free ranging bighorn sheep.  相似文献   

6.
ABSTRACT Introduced disease is a major mortality factor in some populations of bighorn sheep (Ovis canadensis). Epizootics of infectious keratoconjunctivitis (IKC) and contagious ecthyma occurred in bighorn sheep in the Silver Bell Mountains of south-central Arizona, USA, from 1 December 2003 to 31 March 2004. Our objectives were to 1) investigate the influence of the epizootic on abundance and demographics and 2) examine how IKC affected the mortality, behavior, and movements of clinically affected animals. Morbidity was 39%, and all sex and age classes were affected. The population declined 23%, with most mortality in the adult female (1 M, 11 F) segment of the population. Of the diseased animals that were marked (n = 27), 44% recovered and 44% died. Predation (50%) and starvation (33%) were the primary causes of mortality of diseased bighorn sheep. Bighorn sheep that were infected spent less time feeding and moved less than noninfected animals during the epizootic. Managers might be able to minimize losses of infected animals through predator control. To minimize losses to starvation, managers should refrain from any activity that disturbs infected animals (including treatment) because disturbances increase energy expenditures and expose infected animals to injury.  相似文献   

7.
White‐nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long‐term monitoring data to examine WNS‐related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist‐net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population‐level response to WNS, we investigated post‐WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long‐eared bat), and Perimyotis subflavus (tri‐colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long‐term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS‐affected bat populations.  相似文献   

8.
Although numerous patient‐specific co‐factors have been shown to be associated with worse outcomes in COVID‐19, the prognostic value of thalassaemic syndromes in COVID‐19 patients remains poorly understood. We studied the outcomes of 137 COVID‐19 patients with a history of transfusion‐dependent thalassaemia (TDT) and transfusion independent thalassaemia (TIT) extracted from a large international cohort and compared them with the outcomes from a matched cohort of COVID‐19 patients with no history of thalassaemia. The mean age of thalassaemia patients included in our study was 41 ± 16 years (48.9% male). Almost 81% of these patients suffered from TDT requiring blood transfusions on a regular basis. 38.7% of patients were blood group O. Cardiac iron overload was documented in 6.8% of study patients, whereas liver iron overload was documented in 35% of study patients. 40% of thalassaemia patients had a history of splenectomy. 27.7% of study patients required hospitalization due to COVID‐19 infection. Amongst the hospitalized patients, one patient died (0.7%) and one patient required intubation. Continuous positive airway pressure (CPAP) was required in almost 5% of study patients. After adjustment for age‐, sex‐ and other known risk factors (cardiac disease, kidney disease and pulmonary disease), the rate of in‐hospital complications (supplemental oxygen use, admission to an intensive care unit for CPAP therapy or intubation) and all‐cause mortality was significantly lower in the thalassaemia group compared to the matched cohort with no history of thalassaemia. Amongst thalassaemia patients in general, the TIT group exhibited a higher rate of hospitalization compared to the TDT group (p = 0.001). In addition, the rate of complications such as acute kidney injury and need for supplemental oxygen was significantly higher in the TIT group compared to the TDT group. In the multivariable logistic regression analysis, age and history of heart or kidney disease were all found to be independent risk factors for increased in‐hospital, all‐cause mortality, whereas the presence of thalassaemia (either TDT or TIT) was found to be independently associated with reduced all‐cause mortality. The presence of thalassaemia in COVID‐19 patients was independently associated with lower in‐hospital, all‐cause mortality and few in‐hospital complications in our study. The pathophysiology of this is unclear and needs to be studied in vitro and in animal models.  相似文献   

9.
Beginning in the early 1900s, poly-factorial, poly-microbial pneumonia was identified as a disease affecting bighorn sheep (Ovis canadensis) and it continues to threaten bighorn populations, posing an ongoing management challenge. In May and June 2013, a pneumonia outbreak linked to the pathogen Mycoplasma ovipneumoniae led to an all-age die-off of desert bighorn sheep (O. c. nelsoni) at Old Dad Peak in the Kelso Mountains of the Mojave Desert in California, USA. Subsequently, we observed clinical signs of respiratory disease among bighorn sheep in multiple neighboring ranges. Our objective was to investigate post-outbreak survival of adult female bighorn across 9 populations from 2014 to 2017 in the Mojave Desert and evaluate the relationship between M. ovipneumoniae infection and survival, while testing effects of range factors that could potentially influence differences in adult female survival (i.e., forage quality, winter precipitation, population abundance). We fitted adult females with radio-collars following the outbreak and collected serum and nasal swab samples for competitive enzyme-linked immunosorbent assay (cELISA) and polymerase chain reaction (PCR) testing to determine exposure and infection status at time of capture. We tracked survival of 115 adult females with radio-collars and used the known-fate model in Program MARK to evaluate effects and estimate survival from November 2013 to March 2017. Annual survival was negatively correlated with positive infection status at capture but varied across populations with respect to differences in range conditions. Summer and autumn forage quality, as represented by mean normalized difference vegetation index (NDVI) values for summer and autumn, was positively correlated with overwinter survival, whereas winter precipitation (a proxy for winter severity) was negatively correlated with overwinter survival. Population abundance was negatively correlated with annual survival, suggesting a potential density-dependent effect. Model-averaged annual survival estimates ranged from 0.700 ± 0.07 (SE) to 0.945 ± 0.026 for infected individuals and 0.896 ± 0.03 to 0.983 ± 0.011 for uninfected individuals. We conclude that summer and autumn forage quality, indexed by NDVI, may partially offset the negative effect associated with M. ovipneumoniae infection on host survival. Our survival modeling results suggest that chronic infection may have afflicted adult females that were PCR-positive (i.e., infected with M. ovipneumoniae) at time of capture. We propose programmatic re-testing of infected individuals to assess pathogen persistence at the individual level and evaluate whether selective culling might potentially help to reduce prevalence and transmission within populations. © 2020 The Wildlife Society.  相似文献   

10.
Adult sex ratio and fecundity (juveniles per female) are key population parameters in sustainable wildlife management, but inferring these requires abundance estimates of at least three age/sex classes of the population (male and female adults and juveniles). Prior to harvest, we used an array of 36 wildlife camera traps during 2 and 3 weeks in the early autumn of 2016 and 2017, respectively. We recorded white‐tailed deer adult males, adult females, and fawns from the pictures. Simultaneously, we collected fecal DNA (fDNA) from 92 20 m × 20 m plots placed in 23 clusters of four plots between the camera traps. We identified individuals from fDNA samples with microsatellite markers and estimated the total sex ratio and population density using spatial capture–recapture (SCR). The fDNA‐SCR analysis concluded equal sex ratio in the first year and female bias in the second year, and no difference in space use between sexes (fawns and adults combined). Camera information was analyzed in a spatial capture (SC) framework assuming an informative prior for animals’ space use, either (a) as estimated by fDNA‐SCR (same for all age/sex classes), (b) as assumed from the literature (space use of adult males larger than adult females and fawns), or (c) by inferring adult male space use from individually identified males from the camera pictures. These various SC approaches produced plausible inferences on fecundity, but also inferred total density to be lower than the estimate provided by fDNA‐SCR in one of the study years. SC approaches where adult male and female were allowed to differ in their space use suggested the population had a female‐biased adult sex ratio. In conclusion, SC approaches allowed estimating the preharvest population parameters of interest and provided conservative density estimates.  相似文献   

11.
Dispersal plays a vital role in the geographical distribution, population genetic structure, quantity dynamics, and evolution of a species. Sex‐biased dispersal is common among vertebrates and many studies have documented a tendency toward male‐biased dispersal in mammals and female‐biased dispersal in birds. However, dispersal patterns in reptiles remain poorly understood. In this study, we explored the genetic diversity and dispersal patterns of the widely distributed Asian pitviper Protobothrops mucrosquamatus. In total, 16 polymorphic microsatellite loci were screened in 150 snakes (48 males, 44 females, 58 samples without sex information) covering most of their distribution. Microsatellite analysis revealed high genetic diversity in Pmucrosquamatus. Bayesian clustering of population assignment identified two major clusters for all populations, somewhat inconsistent with the mitochondrial DNA phylogeny of Pmucrosquamatus reported in previous research. Analyses based on 92 sex‐determined and 37 samples of Pmucrosquamatus from three small sites in Sichuan, China (Mingshan, Yibin, and Zizhong) consistently suggested female‐biased dispersal in Pmucrosquamatus, which is the first example of this pattern in snakes. The female‐biased dispersal patterns in Pmucrosquamatus may be explained by local resource competition.  相似文献   

12.
The jaguar (Panthera onca) plays an important role in maintaining biodiversity and ecological processes. We evaluated the status of a jaguar population in one of the last stronghold habitats for its conservation in the Atlantic Forest, the Rio Doce State Park (RDSP). We used a random survey design from 2016/17 to estimate jaguar abundance and density as well as its occupancy and detection probabilities in the entire Park''s area. To monitor for temporal fluctuations in density and abundance, we used a systematic survey design in the southern portion of the Park where jaguars were more recorded when using the random approach. We then conducted two surveys in 2017/18 and 2020. Our 2016/17 random survey revealed that jaguar density (0.11 ± SE 0.28 individuals/100 km2) was the lowest obtained for the species across the Atlantic Forest. We noticed that jaguar density increased three times from 2017/18 (0.55 ± SE 0.45 individuals/100 km2) to 2020 (1.61 ± SE 0.6 individuals/100 km2). Jaguar occupancy and detection probability were 0.40 and 0.08, respectively. The low jaguar occupancy probability was positively associated with smaller distances from lakes and records of potential prey. The detection probability was positively associated with prey detection, the rainy season, and smaller distances from lakes. Our work contributes to a growing awareness of the potential conservation value of a protected area in a human‐dominated landscape as one of the last strongholds for jaguars across the Atlantic Forest.  相似文献   

13.
An epizootic of infectious keratoconjunctivitis occurred in bighorn sheep (Ovis canadensis) in Yellowstone National Park during the winter of 1981-82. The causative organism was identified as Chlamydia sp. Mortality related to the epizootic was approximately 60% of an estimated 500 bighorn sheep in the northern range population. The infection probably affected all sex and age classes, but field surveys of live animals and mortality suggested that mature rams died disproportionately. Limited field observations the following winter on individuals having both normal and cloudy-appearing eyes suggested that half of the bighorns then present on the core units of winter range had contracted the disease and survived. By 1988, there were about 300 bighorn sheep in the population.  相似文献   

14.
Bighorn sheep (Ovis canadensis) evolved for thousands of years in the presence of numerous predators, including mountain lions (Puma concolor). Bighorn sheep have presumably developed predator avoidance strategies; however, the effectiveness of these strategies in reducing risk of mountain lion predation is not well understood. These strategies are of increasing interest because mountain lion predation on bighorn sheep has been identified as a leading cause of mortality in some sheep populations. Therefore, we investigated how mountain lions affect both bighorn sheep habitat selection and risk of mortality in Arizona, USA. We used 2 approaches to investigate the predator-prey relationship between mountain lions and bighorn sheep. We fit 103 bighorn sheep (81 females and 22 males) with global positioning system radio-collars in 2 Arizona populations from 2013 to 2017, and used a negative binomial resource selection probability function to evaluate whether bighorn sheep selected for habitat features in accordance with presumed predator avoidance strategies, including terrain ruggedness, slope, topographic position, and horizontal obstruction, in 2 seasons (winter and summer). We then estimated how habitat features such as terrain ruggedness, slope, horizontal obstruction, and group size, influence the risk of mortality due to mountain lion predation using an Andersen-Gill proportional hazards model. Generally, both sexes selected areas with lower horizontal obstruction and intermediate ruggedness and slope, but selection patterns differed between seasons and sexes. The use of more rugged areas and steeper slopes decreased the risk of mortality due to mountain lion predation, consistent with presumed predator avoidance strategies. Increased group size decreased risk of bighorn sheep mortality due to mountain lion predation but this effect became marginal at approximately 10 individuals/group. We did not identify a relationship between horizontal obstruction and bighorn sheep mortality risk. Our findings can be used in habitat and population management decisions such as the prioritization of habitat restoration sites or selection of translocation sites. In addition, we suggest that augmentation of low-density bighorn sheep populations may reduce mountain lion predation risk by increasing group size, and that releasing large groups of bighorn sheep in population augmentation and reintroduction efforts may help to reduce mountain lion predation.  相似文献   

15.
Medium and large‐sized mammals of Jorgo‐Wato Protected Forest have not yet been documented though the forest established before four decades. Hence, this study aims to document medium and large mammals and the behavioral responses of selected mammals toward anthropogenic activities in the study area. The study was conducted from February 2015 to June 2016, encompassing the wet and dry seasons. Data were collected mainly through camera traps, indirect and direct evidence. The study revealed about 23 medium and large‐sized mammals that belong to seven orders namely Bovidae, Carnivora, Primates, Rodentia, Tubulidentata, Lagomorpha, and Hyracoidea. Papio anubis, C. guereza, and C. aethiops were the most abundant large mammals in JWPF. Because of high anthropogenic activities, African buffalo shifted its activity period from diurnal into crepuscular and nocturnal. African buffalo traveled longer distances during the wet season (mean = 14.33 km, SD = 1.25 km) than during the dry season (mean = 9.00 km, SD = 2.16 km). This could be due to the fact that the local people were less likely to go to the forest for resource exploitation during the wet season as they are fully engaged in agricultural activities. However, low agricultural activities during the dry season allow the local people to extract resources and involve in bushmeat hunting which could limit the movement of mammals to their refugia. African buffalo preferred to rest on and adjacent to a gravel road (22.1%) in the forest, followed by on open rocky hilltops (14.7%) at night time, but rest in the bottomland thicket vegetation during the dry daytime. Regardless of high human pressure in the area, this study has revealed a good number of medium and large‐sized mammals that could be used as baseline information to design a sound conservation and management action plan of large mammals and their habitat in Jorgo‐Wato Protected Forest.  相似文献   

16.
In long‐lived polygynous species, male reproductive success is often monopolized by a few mature dominant individuals. Young males are generally too small to be dominant and may employ alternative tactics; however, little is known about the determinants of reproductive success for young males. Understanding the causes and consequences of variability in early reproductive success may be crucial to assess the strength of sexual selection and possible long‐term trade‐offs among life‐history traits. Selective pressures driven by fluctuating environmental conditions may depend on age class. We evaluated the determinants of reproduction in male bighorn sheep (Ovis canadensis) aged 2–4 years using 30 years of individual‐level data. These young males cannot defend estrous ewes and use alternative mating tactics. We also investigated how the age of first detected reproduction was correlated to lifetime reproductive success and longevity. We found that reproductive success of males aged 3 years was positively correlated to body mass, to the proportion of males aged 2–4 years in the competitor pool, and to the number of females available per adult male. These results suggest that reproductive success depends on both competitive ability and population age–sex structure. None of these variables, however, had significant effects on the reproductive success of males aged 2 or 4 years. Known reproduction before the age of five increased lifetime reproductive success but decreased longevity, suggesting a long‐term survival cost of early reproduction. Our analyses reveal that both individual‐level phenotypic and population‐level demographic variables influence reproductive success by young males and provide a rare assessment of fitness trade‐offs in wild polygynous males.  相似文献   

17.
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.  相似文献   

18.
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.  相似文献   

19.
Human‐mediated habitat fragmentation in freshwater ecosystems can negatively impact genetic diversity, demography, and life history of native biota, while disrupting the behavior of species that are dependent on spatial connectivity to complete their life cycles. In the Alouette River system (British Columbia, Canada), dam construction in 1928 impacted passage of anadromous sockeye salmon (Oncorhynchus nerka), with the last records of migrants occurring in the 1930s. Since that time, O. nerka persisted as a resident population in Alouette Reservoir until experimental water releases beginning in 2005 created conditions for migration; two years later, returning migrants were observed for the first time in ~70 years, raising important basic and applied questions regarding life‐history variation and population structure in this system. Here, we investigated the genetic distinctiveness and population history of Alouette Reservoir O. nerka using genome‐wide SNP data (n = 7,709 loci) collected for resident and migrant individuals, as well as for neighboring anadromous sockeye salmon and resident kokanee populations within the Fraser River drainage (n = 312 individuals). Bayesian clustering and principal components analyses based on neutral loci revealed five distinct clusters, largely associated with geography, and clearly demonstrated that Alouette Reservoir resident and migrant individuals are genetically distinct from other O. nerka populations in the Fraser River drainage. At a finer level, there was no clear evidence for differentiation between Alouette Reservoir residents and migrants; although we detected eight high‐confidence outlier loci, they all mapped to sex chromosomes suggesting that differences were likely due to uneven sex ratios rather than life history. Taken together, these data suggest that contemporary Alouette Reservoir O. nerka represents a landlocked sockeye salmon population, constituting the first reported instance of deep‐water spawning behavior associated with this life‐history form. This finding punctuates the need for reassessment of conservation status and supports ongoing fisheries management activities in Alouette Reservoir.  相似文献   

20.
《Aging cell》2022,21(6)
DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome‐wide association study of whole blood DNAm in relation to mortality in 15 cohorts (= 15,013). During a mean follow‐up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry‐stratified meta‐analysis of all‐cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at < 1 × 10−7, of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm‐based prediction models for all‐cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C‐index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, P MR = 4.1 × 10−4) and negatively associated with longevity (Beta = −1.9, P MR = 0.02). Pathway analysis revealed that genes associated with mortality‐related CpGs are enriched for immune‐ and cancer‐related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号