首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical method for the enantioselective determination of selfotel in human urine has been developed and validated. The method is based on high-performance liquid chromatography and utilizes CGS 20005 (a selfotel analog) as the internal standard. Urine samples were derivatized in situ with o-phthalic dicarboxaldehyde–3-mercaptopropionic acid and 9-fluorenylmethyl chloroformate (FMOC). Chromatographic separations of the FMOC derivatives of selfotel enantiomers and the internal standard were achieved using a column switching system consisting of an Inertsil ODS-2 column (75×4.6 mm I.D., 5 μm) and a Chiralcel OD-R column (250×4.6 mm I.D., 10 μm). The composition of the mobile phase was acetonitrile–0.1 M phosphate buffer, pH 2.50 (35:65) for the Inertsil ODS-2 column and acetonitrile–0.1 M phosphate buffer, pH 2.00 (35:65) for the Chiralcel OD-R column. The analytes were monitored using fluorescence detection at an excitation wavelength of 262 nm and an emission wavelength of 314 nm. The limit of quantification (LOQ) for this method is 0.25 μg/ml for each selfotel enantiomer. The method was successfully utilized to determine preliminary selfotel stereospecific pharmacokinetics.  相似文献   

2.
A direct, isocratic, and simple reversed-phase HPLC method was described for the separation of enantiomers of the proton pump inhibitor, rac-pantoprazole (PAN) using cellulose-based chiral stationary phases (Chiralcel OD-R and Chiralcel OJ-R). Some structurally related chiral benzimidazole sulfoxides, rac-omeprazole (OME) and raclansoprazole (LAN), were also studied. Chiralcel OJ-R was successful in the resolution of enantiomers of rac-PAN and rac-OME, while Chiralcel OD-R was most suitable for resolving the enantiomers of rac-LAN. Highest enantioselectivity to rac-PAN and rac-OME was achieved on Chiralcel OJ-R by using acetonitrile as an organic modifier, whereas methanol afforded better resolution of rac-LAN on Chiralcel OD-R than acetonitrile. Increases in buffer concentration and column temperature decreased retention and did not improve the resolution of the enantiomers on both columns. Using a mixture of 50 mM sodium perchlorate solution and acetonitrile as a mobile phase at a flow rate of 0.5 ml/min, maximum separation factors of 1.26 and 1.13 were obtained for the enantiomers of rac-PAN and rac-OME using a Chiralcel OJ-R column, while maximum separation factor of 1.16 was obtained for the enantiomers of rac-LAN using a Chiralcel OD-R column. © 1995 Wiley-Liss, Inc.  相似文献   

3.
A new ion-pair high-performance liquid chromatographic method with column-switching has been developed for the determination of paraquat in human serum samples. The diluted serum sample was injected onto a precolumn packed with LiChroprep RP-8 (25-40 μm) and polar serum components were washed out by 3% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 5 mM sodium octanesulfonate. After valve switching to inject position, concentrated compounds were eluted in the back-flush mode and separated on an Inertsil ODS-2 column with 17% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 10 mM sodium octanesulfonate. The total analysis time per sample was about 30 min and mean recovery was 98.5±2.8% with a linear range of 0.1–100 μg/ml. This method has been successfully applied to serum samples from incidents by paraquat poisoning.  相似文献   

4.
A new high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of metampicillin and its metabolite ampicillin in biological fluids. The plasma, urine and bile samples were injected onto a precolumn packed with LiChrosorb RP-8 (25–40 μm) after simple dilution with an internal standard solution in 0.05 M phosphate buffer (pH 7.0). The polar plasma components were washed out using 0.05 M phosphate buffer (pH 7.0). After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by an Ultracarb 5 ODS-30 column with a gradient system of acetonitrile-0.02 M phosphate buffer (pH 7.0) as the mobile phase. The method showed excellent precision, accuracy and speed with a detection limit of 0.1 μg/ml. The total analysis time per sample was less than 40 min and the coefficients of variation for intra- and inter-assay were less than 5.1%. This method has been successfully applied to plasma, urine and bile samples from rats after intravenous injection of metampicillin.  相似文献   

5.
A sensitive and automated method for the separation and individual determination of tramadol enantiomers in plasma has been developed using solid-phase extraction (SPE) on disposable extraction cartridges (DECs) in combination with chiral liquid chromatography (LC). The SPE operations were performed automatically by means of a sample processor equipped with a robotic arm (ASPEC system). The DEC filled with ethyl silica (50 mg) was first conditioned with methanol and phosphate buffer, pH 7.4 A 1.0-ml volume of plasma was then applied on the DEC. The washing step was performed with the same buffer. The analytes were eluted with 0.15 ml of methanol, and 0.35 ml of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) were added to the extract before injection into the LC system. The enantiomeric separation of tramadol was achieved using a Chiralcel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase. The mobile phase was a mixture of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) and acetonitrile (75:25). The mobile-phase pH and the NaClO4 concentration were optimized with respect to enantiomeric resolution. The method developed was validated. Recoveries for both enantiomers of tramadol were about 100%. The method was found to be linear in the 2.5–150 ng/ml concentration range [r2=0.999 for (+)- and (−)-tramadol]. The repeatability and intermediate precision at a concentration of 50 ng/ml were 6.5 and 8.7% for (+)-tramadol and 6.1 and 7.6% for (−)-tramadol, respectively.  相似文献   

6.
A simple and selective ion-pair HPLC method has been developed for the analysis of clarithromycin in aqueous solutions and in gastric juice. A Hypersil ODS 5-μm (150 × 4.6 mm I.D.) column was used with a mobile phase consisting of acetonitrile-aqueous 0.05 M phosphate buffer (pH 4.6) containing 5 mM 1-octanesulphonic acid (50:50, v/v). The column temperature was 50°C and detection was by UV absorption (210 nm). The limits of detection of 50-μl samples were 0.4 μg/ml (aqueous) and 0.78 μg/ml (0.5 ml gastric juice) or better. The assay was linear in the range of 1.56 to 100 μg/ml with r2 values greater than 0.99. The recovery from the gastric juice samples was 98.5±2.9%. The method was applied successfully to determine the stability of clarithromycin in 0.01 M HCl and gastric juice.  相似文献   

7.
A fully automated narrowbore high-performance liquid chromatography method with column switching was developed for the simultaneous determination of sildenafil and its active metabolite UK-103,320 in human plasma samples without pre-purification. Diluted plasma sample (100 μl) was directly introduced onto a Capcell Pak MF Ph-1 column (20×4 mm I.D.) where primary separation occurred to remove proteins and concentrate target substances using 15% acetonitrile in 20 mM phosphate solution (pH 7). The drug molecules eluted from the MF Ph-1 column were focused in an intermediate column (35×2 mm I.D.) by a valve switching step. The substances enriched in the intermediate column were eluted and separated on a phenyl-hexyl column (100×2 mm I.D.) using 36% acetonitrile in 10 mM phosphate solution (pH 4.5) when the valve status was switched back. The method showed excellent sensitivity (detection limit of 10 ng/ml), good precision (RSD≤2.3%) and accuracy (bias: ±2.0%) and speed (total analysis time 17 min). The response was linear (r2≥0.999) over the concentration range 10–1000 ng/ml.  相似文献   

8.
A high-performance liquid chromatographic method for the determination of a new fluoroquinolone antimicrobial agent, (S)-10-[(S)-(8-amino-6-azaspiro[3,4]octan-6-yl)]-9-fluoro-2,3-dihydro-3-methyl-7-oxo-7H-pyrido [1,2,3-de][1,4]benzoxazine-6-carboxylic acid hemihydrate (DV-7751a, I) in human serum and urine has been developed. Compound I and the internal standard were extracted from serum and urine by means of Bond Elut C8 LRC column. The extracts were chromatographed on a reversed-phase Inertsil ODS-2 column using tetrahydrofuran-50 mM KH2PO4 (pH 2)-1 M ammonium acetate (19:81:1, v/v) as the mobile phase at a flow-rate of 1.0 ml/min. Fluorescence detection at an excitation wavelength of 305 nm and an emission wavelength of 530 nm resulted in a limit of quantitation of 0.0098 μg/ml for serum and 0.098 μg/ml for urine. The method showed satisfactory sensitivity, precision, accuracy, recovery and selectivity. Stability studies showed that I was stable in serum and urine for at least 1 month at −20°C and for at least 48 h at room temperature.  相似文献   

9.
The reversed-phase HPLC methods were developed to determinate the covalently bound protein adducts of the novel anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) via its glucuronides after releasing aglycone by alkaline hydrolysis in human plasma and human serum albumin (HSA). An aliquot of 75 μl of the mixture was injected onto a Spherex C18 column (150×4.6 mm; 5 μm) at a flow-rate of 2.5 ml/min. The mobile phase comprising of acetonitrile:10 mM ammonium acetate buffer (24:76, v/v, pH 5.8) was used in an isocratic condition, and DMXAA was detected by fluorescence. The method was validated with respect to recovery, selectivity, linearity, precision, and accuracy. Calibration curves for DMXAA were constructed in the concentration range of 0.5–40 μM in washed blank human plasma or HSA prior to alkaline hydrolysis. The difference between the theoretical and calculated concentration and the relative standard deviation were less than 10% at all quality control (QC) concentrations. The limit of detection for the covalent adduct in human plasma or HSA is 0.20 μM. The methods presented good accuracy, precision and sensitivity for use in the preclinical and clinical studies.  相似文献   

10.
A rapid method for the simultaneous determination of sulfamonomethoxine (SMM), miloxacin (MLX) and oxolinic acid (OA) in serum and muscle of cultured fish by high-performance liquid chromatography has been developed. A Hisep shielded hydrophobic phase column (15 cm×4.6 mm I.D.) and a mobile phase of 0.05 M citric acid-0.2 M disodium hydrogenphosphate buffer, pH 2.5 in 10 mM tetra-n-butyl ammonium bromide-acetonitrile (85:15) with ultraviolet detection at 265 nm were used. The recoveries of SMM, MLX and OA from serum and muscle samples were 72–101%. The detection limits of the three drugs were 0.05–0.1 μg/ml or g of sample.  相似文献   

11.
We present a method for the enantioselective analysis of propafenone in human plasma for application in clinical pharmacokinetic studies. Propafenone enantiomers were resolved on a 10-μm Chiralcel OD-R column (250×4.6 mm I.D.) after solid-phase extraction using disposable solid-phase extraction tubes (RP-18). The mobile phase used for the resolution of propafenone enantiomers and the internal standard propranolol was 0.25 M sodium perchlorate (pH 4.0)–acetonitrile (60:40, v/v), at a flow-rate of 0.7 ml/min. The method showed a mean recovery of 99.9% for (S)-propafenone and 100.5% for (R)-propafenone, and the coefficients of variation obtained in the precision and accuracy study were below 10%. The proposed method presented quantitation limits of 25 ng/ml and was linear up to a concentration of 5000 ng/ml of each enantiomer.  相似文献   

12.
We developed a sensitive assay to measure amoxicillin in human plasma and midle ear fluid (MEF) using solid-phase extraction and reversed-phase HPLC. Amoxicillin and cefadroxil, the internal standard, were extracted from 50–200 μl of sample with Bond Elut C18 cartridges. The exact was analyzed on a 15 cm × 2 mm, 5μm Keystone MOS Hypersil-1 (C8) column with UV detection at 210 nm. The mobile phase was 6% acetonitrile in 5 mM phosphate buffer (pH = 6.5) and 5 mM tetrabutylammonium. The average absolute recovery of amoxicillin and cefadroxil were 91.2 ± 16.6% and 91.0 ± 6.8%, respectively. The limit of quantitation was 0.125 μg/ml with 200 μl sample size. The linear range was from 0.125 to 35.0 μg/ml with correlation coefficients greater than 0.999. These analytic conditions produced a highly sensitive amoxicillin assay in human body fluids without derivatization.  相似文献   

13.
Glutamine and γ-aminobutyric acid (GABA), formed from glutamic acid in crude tissue extracts by glutamine synthetase and glutamic acid decarboxylase respectively, were separated by derivatization with dansyl chloride followed by reversed-phase high-performance liquid chromatography on an Altex Ultrasphere ODS-5 column. The mobile phase was a gradient of 100 mM potassium dihydrogen phosphate (pH 2.1) with 0–40% acetonitrile. The amounts of glutamine and GABA formed from glutamic acid were determined under different reaction conditions.  相似文献   

14.
An HPLC method for determining a flavonoid, naringin, and its metabolite, naringenin, in human plasma is presented for application to the pharmacokinetic study of naringin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using genistin (for naringin) or daidzein (for naringenin) as an internal standard and solid-phase extraction using a Sep-Pak t C18 cartridge. For the determination, HPLC was carried out using an Inertsil ODS-2 column (250x4.6 m I.D., 5 μm particle size). The mobile phases were acetonitrile-0.1 M ammonium acetate solution (20:80, v/v; pH 7.1) for naringin and acetonitrile-0.1 M ammonium acetate solution-acetic acid (30:69:1, v/v; pH 4.9) for naringenin. The flow-rate was 1 ml min−1. The analyses were performed by monitoring the wavelength of maximum UV absorbance at 280 nm for naringin and at 292 nm for naringenin. The detection limits on-column were about 0.2 ng for the two flavonoids.  相似文献   

15.
A method for the simultaneous determination of bile acids in rat liver tissue by high-performance liquid chromatography was developed. Without prior fractionation and alkaline hydrolysis, 30 unconjugated, glycine- and taurine-conjugated bile acids were detected by post-column enzymatic reaction and fluorescence detection. They were separated on a reversed-phase column using a linear gradient solvent system of 10 mM tribasic ammonium phosphate–acetonitrile–methanol (44:12:5, v/v/v) and 20 mM dibasic ammonium phosphate–acetonitrile–methanol (2:1:2, v/v/v). The limits of detection were 1–5 pmol, and calibration curves were linear for concentrations ranging between 10 and 4000 pmol per 10 μl injection. This rapid and reliable method is effective for measuring bile acid levels in liver tissue not only of rats but also of patients with hepatobiliary and other diseases.  相似文献   

16.
以尿囊素作为鉴别试剂,对肉苁蓉属中的管花肉苁蓉与同属的其它品种植物进行鉴别.采用HPLC法,在以下色谱条件下(Hypersil ODS-2色谱柱4.6 mm×250 mm,5 μm,流动相为乙腈-7.5%二氧六环水溶液1:99,流速0.5 mL/min,柱温25℃,检测波长224 nm)绘制肉苁蓉属植物不同品种的色谱图.在盐生肉苁蓉或荒漠肉苁蓉的HPLC色谱图中,与对照品尿囊素色谱峰相应的位置处,显示保留时间相同的色谱峰,而在管花肉苁蓉供试品的HPLC色谱图中,无尿囊素色谱峰,提示不含尿囊素的肉苁蓉为管花肉苁蓉.该鉴别方法简便、灵敏,能快速、准确地将管花肉苁蓉与同属其它品种植物鉴别开来.  相似文献   

17.
新型柱前衍生试剂分析草甘膦的高效液相色谱研究   总被引:1,自引:0,他引:1  
以2,5-二甲氧基苯磺酰氯(DMOSC)为柱前衍生化试剂,建立了柱前衍生草甘膦的紫外检测反相高效液相色谱法,并优化了衍生化条件,得最佳条件:衍生温度35℃,时间15 min,pH 10.0,草甘膦与DMOSC的摩尔比为1∶6。HPLC分析条件:采用Kromasil C18柱,流速1.0 mL/min,柱温30℃,检测波长220 nm,流动相为甲醇-乙腈-磷酸盐缓冲溶液(0.02 mol/L、pH 5.5),三者的体积比为15∶5∶80。结果表明:草甘膦质量浓度在5~100μg/mL范围内线性关系良好,相关系数为0.996 2,检测限为0.067μg/mL。实验表明该方法反应条件温和,灵敏度高,衍生产物稳定。  相似文献   

18.
An improved high-performance liquid chromatography method using a diisopropyl-C14 reversed-phase column (Zorbax Bonus-RP column) and a liquid–liquid extraction technique with UV detection is presented for the analysis of pyronaridine in human whole blood and plasma. Tribasic phosphate buffer (50 mM, pH 10.3) and diethyl ether were used for liquid–liquid extraction. The mobile phase consists of acetonitrile–0.08 M potassium dihydrogen phosphate buffer (13:87, v/v) with the pH 2.8 adjusted by orthophosphoric acid. Amodiaquine was found to be a suitable internal standard for the method. The quantification limit with UV detection at 275 nm was 3 ng on-column for both plasma and blood samples. The method was applied to plasma and blood specimens from a rabbit after a single intramuscular dose of pyronaridine tetraphosphate (20 mg/kg as base). From this in vivo study, evidence was found that pyronaridine is concentrated in blood cells, with a blood:plasma ratio ranging from 4.9 to 17.8. We conclude that blood is the preferred matrix for clinical pharmacokinetic studies.  相似文献   

19.
A rugged, simple, and selective method for the determination of danofloxacin and its primary metabolite, N-desmethyldanofloxacin, in cattle (liver, muscle, kidney, and fat) and chicken (liver and muscle) tissues was developed. The method is selective for danofloxacin and N-desmethyldanofloxacin over other veterinary important fluoroquinolones, such as enrofloxacin, ciprofloxacin, norfloxacin, and ofloxacin. Selectivity is achieved through a combination of extraction, chromatography, and fluorescence detection. The analytes were extracted from homogenized tissues using a methanolperchloric-phosphoric acid solution. After centrifugation, direct injection of extraction supernate was possible. The limit of quantitation was 20 pg on column. Separation was achieved on an Inertsil C8 (5 μm, 100 Å) column with dimensions of 250×4.6 mm I.D. The mobile phase consisted of 0.05 M phosphate buffer (pH 3.5)-acetonitrile (88:12). A fluorescence detector was utilized with an excitation wavelenght of 280 nm and an emission wavelength of 440 nm. The assay was accurate and reproducible within the range of 10 to 500 ng/g for both danofloxacin and N-desmethyldanofloxacin. Intra-assay accuracy was between 98 and 101%, and precision was less than 4%. Inter-assay accuracy was between 99 and 102%, while precision was less than 2%. Recoveries for both analytes over the dynamic range were greater than 90% for all the tissues.  相似文献   

20.
Calphostin C is a potent inhibitor of protein kinase C and can induce Ca2+-dependent apoptosis in human ALL cells. Further development of calphostin C will require detailed pharmacodynamic studies in preclinical animal models. Therefore, we established a sensitive and accurate high-performance liquid chromatography (HPLC)-based quantitative detection method for the measurement of calphostin C levels in plasma. Extraction of calphostin C from plasma was performed by precipitation of plasma protein using acetonitrile and an aliquot of extracted supernatant was injected onto a Hewlett-Packard HPLC system constituting a 250×4 mm LiChrospher 100, RP-18 (5 μm) in conjunction with a 4×4 mm LiChrospher 100, RP-18 guard column (5 μm). The eluted compounds were detected by diode array detection set at a wavelength of 479 nm. Acetonitrile–water containing 0.1% trifluoroacetic acid and 0.1% triethylamine (70:30, v/v) was used as the mobile phase. The average extraction recovery from plasma was 97.3%. Good linearity (r>0.999) was observed throughout the concentration range of 0.05–40 μM for calphostin C in 50 μl of plasma. Intra- and inter-assay variabilities were less than 6% in plasma. The lowest detection limit of calphostin C in 50 μl plasma was 0.02 μM at a signal-to-noise ratio of ∼3. The availability of this assay will now permit detailed pharmacodynamic and pharmacokinetic studies of calphostin C in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号