首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Among coastal plant species at risk from rapid environmental changes is the North American Great Lakes dune endemic Cirsium pitcheri. Despite being listed as federally threatened, little is known about how C. pitcheri seed attributes influence germination and dormancy‐break patterns in the context of climate change. Following a previous work where we found differences in the number and weight of C. pitcheri seeds among capitulum positions and study sites, here we examine the effects of seed attributes (capitulum position, seed weight, and site of origin) on the proportion and timing of C. pitcheri seed germination under temperature treatments that simulate projected warming in the Great Lakes (20/10, 25/10, and 30/10°C day/night). Our results demonstrate that C. pitcheri produces diverse cohorts of seeds with seed attributes that significantly influence the timing and probability of germination over a 3‐year soil seed bank. Cirsium pitcheri seed germination proportions were highest at 20°C and decreased successively at 25 and 30°C. Seeds from terminal capitula also had higher germination proportions and took longer to germinate than those from secondary capitula. Lastly, the effect of seed weight on germination probability depended on site of origin and capitulum position, with all effects varying in size and significance over time. Ultimately, our results highlight the considerable differences in germination patterns exhibited by seeds from different capitulum positions and sites of origin and provide insight into the dormancy‐break patterns that C. pitcheri might experience under predicted temperature rise in the Great Lakes region of North America.  相似文献   

2.
Recruitment for many arid‐zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less‐dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well‐watered (Ψsoil = −0.15 MPa) and water‐limited (Ψsoil = −0.35 MPa) conditions. Success at three key recruitment stages—seed germination, emergence, and survival—and final seed viability of ungerminated seeds was assessed. For all species, less‐dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35–40°C) under water‐limited conditions caused 95%–100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30–40°C) and well‐watered conditions, loss of viability was greater from the less‐dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress‐driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid‐zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives.  相似文献   

3.
The seed dispersal mechanisms and regeneration of various forest ecosystems can benefit from the actions of carnivores via endozoochory. This study was aimed to evaluate the role of carnivores in endozoochory and diploendozoochory, as well as their effect on seed viability, scarification, and germination in two forest ecosystems: temperate and tropical dry forest. We collected carnivore scat in the Protected Natural Area of Sierra Fría in Aguascalientes, Mexico, for 2 years to determine the abundance and richness of seeds dispersed by each carnivore species, through scat analysis. We assessed seed viability through optical densitometry using X‐rays, analyzed seed scarification by measuring seed coat thickness using a scanning electron microscope, and evaluated seed germination in an experiment as the percentage of seeds germinated per carnivore disperser, plant species, and forest type. In the temperate forest, four plant species (but mainly Arctostaphylos pungens) were dispersed by four mammal species. The gray fox dispersed the highest average number of seeds per scat (66.8 seeds). Bobcat dispersed seeds through diploendozoochory, which was inferred from rabbit (Sylvilagus floridanus) hair detected in their scats. The tropical dry forest presented higher abundance of seeds and richness of dispersed plant species (four species) than in the temperate forest, and the coati dispersed the highest number of seeds (8,639 seeds). Endozoochory and diploendozoochory did not affect viability in thick‐testa seeds (1,480 µm) in temperate forest and thin‐testa seeds (281 µm) in tropical dry forest. Endozoochory improved the selective germination of seeds. Nine plant species were dispersed by endozoochory, but only one species (Juniperus sp.) by diploendozoochory. These results suggest that carnivores can perform an important ecological function by dispersing a great abundance of seeds, scarifying these seeds causing the formation of holes and cracks in the testas without affecting viability, and promoting the selective germination of seeds.  相似文献   

4.
  1. At the landscape level, intensification of agriculture, fragmentation, and destruction of natural habitats are major causes of biodiversity loss that can be mitigated at small spatial scales. However, the complex relationships between human activities, landscapes, and biodiversity are poorly known. Yet, this knowledge could help private stakeholders managing seminatural areas to play a positive role in biodiversity conservation.
  2. We investigated how water‐abstraction sites could sustain species diversity in vascular‐plant communities and two taxonomic groups of insect communities in a fragmented agricultural landscape.
  3. Landscape‐scale variables (connectivity indices and surrounding levels of herbicide use), as well as site‐specific variables (soil type for vascular plants, floral availability for Rhopalocera, and low herbaceous cover for Orthoptera), were correlated to structural and functional metrics of species community diversity for these taxonomic groups, measured on 35 industrial sites in the Ile‐de‐France region in 2018–2019.
  4. Rhopalocera and Orthoptera consisted essentially of species with a high degree of dispersal and low specialization, able to reach the habitat patches of the fragmented landscape of the study area. Sandy soil harbored more diverse vascular‐plant communities. Plant diversity was correlated to a greater abundance of Rhopalocera and a lower richness of Orthoptera.
  5. Increasing landscape connectivity was related to higher abundance of plants and Rhopalocera, and a higher evenness index for Orthoptera communities. Higher levels of herbicide use were related to a decrease in the biodiversity of plants and Rhopalocera abundance. High levels of herbicide favored high‐dispersal generalist plants, while high levels of connectivity favored low‐dispersal plants. Specialist Orthoptera species were associated with low herbaceous cover and connectivity.
  6. Water‐abstraction sites are valuable seminatural habitats for biodiversity. Changing intensive agricultural practices in surrounding areas would better contribute to conserving and restoring biodiversity on these sites.
  相似文献   

5.
Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co‐evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali‐ or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi‐natural structures, large fields; complex: high amount of natural and semi‐natural structures, small fields) using GPS‐based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare''s retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.  相似文献   

6.
  1. A central theme for conservation is understanding how animals differentially use, and are affected by change in, the landscapes they inhabit. However, it has been challenging to develop conservation schemes for habitat‐specific behaviors.
  2. Here we use behavioral change point analysis to identify behavioral states of golden eagles (Aquila chrysaetos) in the Sonoran and Mojave Deserts of the southwestern United States, and we identify, for each behavioral state, conservation‐relevant habitat associations.
  3. We modeled behavior using 186,859 GPS points from 48 eagles and identified 2,851 distinct segments comprising four behavioral states. Altitude above ground level (AGL) best differentiated behavioral states, with two clusters of short‐distance movement behaviors characterized by low AGL (state 1 AGL = 14 m (median); state 2 AGL = 11 m) and two associated with longer‐distance movement behaviors and characterized by higher AGL (state 3 AGL = 108 m; state 4 AGL = 450 m).
  4. Behaviors such as perching and low‐altitude hunting were associated with short‐distance movements in updraft‐poor environments, at higher elevations, and over steeper and more north‐facing terrain. In contrast, medium‐distance movements such as hunting and transiting were over gentle and south‐facing slopes. Long‐distance transiting occurred over the desert habitats that generate the best updraft.
  5. This information can guide management of this species, and our approach provides a template for behavior‐specific habitat associations for other species of management concern.
  相似文献   

7.
A better understanding of seed movement in plant community dynamics is needed, especially in light of disturbance‐driven changes and investments into restoring degraded plant communities. A primary agent of change within the sagebrush‐steppe is wildfire and invasion by non‐native forbs and grasses, primarily cheatgrass (Bromus tectorum). Our objectives were to quantify seed removal and evaluate ecological factors influencing seed removal within degraded sagebrush‐steppe by granivorous Owyhee harvester ants (Pogonomyrmex salinus Olsen). In 2014, we sampled 76 harvester ant nests across 11 plots spanning a gradient of cheatgrass invasion (40%–91% cover) in southwestern Idaho, United States. We presented seeds from four plant species commonly used in postfire restoration at 1.5 and 3.0 m from each nest to quantify seed removal. We evaluated seed selection for presented species, monthly removal, and whether biotic and abiotic factors (e.g., distance to nearest nest, temperature) influenced seed removal. Our top model indicated seed removal was positively correlated with nest height, an indicator of colony size. Distance to seeds and cheatgrass canopy cover reduced seed removal, likely due to increased search and handling time. Harvester ants were selective, removing Indian ricegrass (Achnatherum hymenoides) more than any other species presented. We suspect this was due to ease of seed handling and low weight variability. Nest density influenced monthly seed removal, as we estimated monthly removal of 1,890 seeds for 0.25 ha plots with 1 nest and 29,850 seeds for plots with 15 nests. Applying monthly seed removal to historical restoration treatments across the western United States showed harvester ants can greatly reduce seed availability at degraded sagebrush sites; for instance, fourwing saltbush (Atriplex canescens) seeds could be removed in <2 months. Collectively, these results shed light on seed removal by harvester ants and emphasize their potential influence on postfire restoration within invaded sagebrush communities.  相似文献   

8.
  1. Worldwide bees provide an important ecosystem service of plant pollination. Climate change and land‐use changes are among drivers threatening bee survival with mounting evidence of species decline and extinction. In developing countries, rural areas constitute a significant proportion of the country''s land, but information is lacking on how different habitat types and weather patterns in these areas influence bee populations.
  2. This study investigated how weather variables and habitat‐related factors influence the abundance, diversity, and distribution of bees across seasons in a farming rural area of Zimbabwe. Bees were systematically sampled in five habitat types (natural woodlots, pastures, homesteads, fields, and gardens) recording ground cover, grass height, flower abundance and types, tree abundance and recorded elevation, temperature, light intensity, wind speed, wind direction, and humidity. Zero‐inflated models, censored regression models, and PCAs were used to understand the influence of explanatory variables on bee community composition, abundance, and diversity.
  3. Bee abundance was positively influenced by the number of plant species in flower (p < .0001). Bee abundance increased with increasing temperatures up to 28.5°C, but beyond this, temperature was negatively associated with bee abundance. Increasing wind speeds marginally decreased probability of finding bees.
  4. Bee diversity was highest in fields, homesteads, and natural woodlots compared with other habitats, and the contributions of the genus Apis were disproportionately high across all habitats. The genus Megachile was mostly associated with homesteads, while Nomia was associated with grasslands.
  5. Synthesis and applications. Our study suggests that some bee species could become more proliferous in certain habitats, thus compromising diversity and consequently ecosystem services. These results highlight the importance of setting aside bee‐friendly habitats that can be refuge sites for species susceptible to land‐use changes.
  相似文献   

9.
Desert annual Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. The main aims of our study were to compare germination characteristics of the dimorphic seeds, ascertain their dormancy types and give the hormonal explanation. The two seed types of S. acuminata absorbed water at different rates with brown seeds imbibing water faster. Germination percentages of brown seeds were significantly higher than those of black seeds in all temperature and light regimes tested. Eight weeks of cold stratification did not break dormancy of black seeds, whereas exogenous GA3 promoted germination. Excised embryos of untreated black seeds produced normal seedlings. Contents of ZR, GA3 and ABA of brown seeds were significantly higher than that of black seeds; while contents of IAA of black seeds were significantly higher than that of brown seeds. Brown seeds of S. acuminata are non-dormant, whereas black seeds have intermediate physiological dormancy (PD). Interaction among ZR, ABA and GA3 may play an important role in dormancy status of both seed types. This is the first report of non-dormancy and intermediate PD in a heteromorphic species.  相似文献   

10.
  • Polyploidy (the state of having more than two genome copies) is widely distributed in flowering plants and can vary within species, with polyploid races often associated with broad ecological tolerances. Polyploidy may influence within‐species variation in seed development, germination and establishment. We hypothesized that interactions between polyploidy and the seed developmental environment would affect subsequent dormancy, germination and early growth traits, particularly in stressful environments.
  • Using seeds developed in a common garden under ambient and warmed conditions, we conducted germination trials under drought and temperature stress, and monitored the subsequent growth of seedlings. The study species, Themeda triandra, is a widespread, keystone, Australian native grass and a known polyploid complex.
  • Tetraploid plants produced heavier, more viable seeds than diploids. Tetraploids were significantly more dormant than diploids, regardless of seed developmental environment. Non‐dormant tetraploids were more sensitive to germination stress compared to non‐dormant diploids. Finally, tetraploid seedlings were larger and grew faster than diploids, usually when maternal plants were exposed to developmental temperatures atypical to the source environment.
  • Seed and seedling traits suggest tetraploids are generally better adapted to stressful environments than diploids. Because tetraploid seeds of T. triandra are more dormant they are less likely to germinate under stress, and when they do germinate, seedling growth is rapid and independent of seed developmental environment. These novel results demonstrate that polyploidy, sometimes in interaction with developmental environment and possibly also asexuality, can have within‐species variation in seed and seedling traits that increase fitness in stressful environments.
  相似文献   

11.
  1. The abandonment of historical land‐use forms within forests, such as grazing or coppicing, and atmospheric nitrogen deposition, has led to an increasing overgrowth of forest gaps and canopy closure in forest ecosystems of Central Europe. From 1945 to 2015, 81% of the forest gaps greater than 150 m2 within the study area transitioned into a closed forest.
  2. This study investigated how the overgrowth process affects flower supply, flower visitors, and reproduction of Campanula species. Six native Campanula species with different light requirements were used as phytometers.
  3. The forest gaps in the studied area are a feature of the historical European cultural landscape. We compared large gaps caused by human activities, small gaps caused by habitat conditions, and closed forests. In eight blocked replicates, each with the three habitat categories, we recorded the flower cover and number of indigenous flowering species in the immediate surroundings, and, of six Campanula species, flower visitors and seed production.
  4. Forest gaps and their size positively affected the number of flowering plant species in the surrounding area, the number of all flower visitor groups, and the number of seeds produced by all six Campanula species. Flower cover in the surrounding area was higher in large gaps, but there was no difference between small gaps and closed forests. Among flower visitors, small bees varied the most between the three habitat categories, and flies varied the least. The effect on the number of seeds produced was particularly strong for three light‐demanding Campanula species.
  5. The overgrowth of forest gaps negatively affected flower supply, flower‐visiting insects, and seed sets of six Campanula species. Forest gaps should be managed to maintain the reproduction of open forest plants and their pollinators.
  相似文献   

12.
  1. In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2 production. The nonlinear interactions among these drivers can be context‐specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation.
  2. We were particularly interested in Mytilus edulis (the blue mussel) from intertidal zones of the Gulf of Maine (GOM), USA, for this study. GOM is a hot spot of global climate change (average sea surface temperature (SST) increasing by >0.2°C/year) with >60% decline in mussel population over the past 40 years.
  3. Here, we utilize bioenergetic underpinnings to identify limits of stress tolerance in M. edulis from GOM exposed to warming and OA. We have measured whole‐organism oxygen consumption rates and metabolic biomarkers in mussels exposed to control and elevated temperatures (10 vs. 15°C, respectively) and current and moderately elevated P CO2 levels (~400 vs. 800 µatm, respectively).
  4. Our study demonstrates that adult M. edulis from GOM are metabolically resilient to the moderate OA scenario but responsive to warming as seen in changes in metabolic rate, energy reserves (total lipids), metabolite profiles (glucose and osmolyte dimethyl amine), and enzyme activities (carbonic anhydrase and calcium ATPase).
  5. Our results are in agreement with recent literature that OA scenarios for the next 100–300 years do not affect this species, possibly as a consequence of maintaining its in vivo acid‐base balance.
  相似文献   

13.
  1. The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context‐dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.
  2. We examined context dependency in a reproductive mutualism between two stream fish species: mound nest‐building bluehead chub Nocomis leptocephalus and mountain redbelly dace Chrosomus oreas, which often uses N. leptocephalus nests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity of C. oreas to associate with N. leptocephalus and decrease reproductive success of both species.
  3. In a large‐scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high‐ and low‐quality spawning substrate (abiotic context).
  4. Contradictory to our first hypothesis, we observed that C. oreas did not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.
  5. The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided by C. oreas positively influenced reproductive success of N. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life‐history traits.
  相似文献   

14.
Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range.  相似文献   

15.
  1. Community scientists have illustrated rapid declines of several aphidophagous lady beetle (Coccinellidae) species. These declines coincide with the establishment of alien coccinellids. We established the Buckeye Lady Beetle Blitz program to measure the seasonal occupancy of coccinellids within gardens across a wide range of landscape contexts. Following the Habitat Compression Hypothesis, we predicted that gardens within agricultural landscapes would be alien‐dominated, whereas captures of natives would be higher within landscapes encompassing a high concentration of natural habitat.
  2. Within the state of Ohio, USA, community scientists collected lady beetles for a 7‐day period across 4 years in June and August using yellow sticky card traps. All identifications were verified by professional scientists and beetles were classified by three traits: status (alien or native), mean body length, and primary diet. We compared the relative abundance and diversity of coccinellids seasonally and determined if the distribution of beetles by size, status, and diet was related to landscape features.
  3. Alien species dominated the aphidophagous fauna. Native aphidophagous coccinellid abundance was positively correlated with forest habitat while alien species were more common when gardens were embedded within agricultural landscapes. Urbanization was negatively associated with both aphidophagous alien and native coccinellids.
  4. Synthesis and Applications: Our census of native coccinellid species within residential gardens—a widespread and understudied habitat—was enabled by volunteers. These data will serve as an important baseline to track future changes within coccinellid communities within this region. We found that native coccinellid species richness and native aphidophagous coccinellid abundance in gardens were positively associated with forest habitat at a landscape scale of 2 km. However, our understanding of when and why (overwintering, summer foraging, or both) forest habitats are important remains unclear. Our findings highlight the need to understand how declining aphidophagous native species utilize forest habitats as a conservation priority.
  相似文献   

16.
We examined seed survival in exotic- and native-dominated grasslands by placing seeds of a once-pervasive native grass species, Nassella pulchra, and two of the most common, widespread exotic grass species, Avena fatua and Bromus hordeaceus, in mesh bags in the field for 3 months. Compared to germination of unexposed seeds not placed in the field, exotic species experienced an approximately 40% reduction in viability, whereas the mortality experienced by the native species was <20%. Despite these differences, germination rates of exposed seeds were similar between native and exotic species because native N. pulchra seeds had lower initial viability prior to entering the seed bank. Seed mortality did not differ based on whether seeds were placed in habitats dominated by exotic or native grasses. Rather, our results suggest that re-establishment of native N. pulchra must focus on maximizing seed viability and survival, and that A. fatua and B. hordeaceus overcome relatively higher losses of viable seeds in the seed bank, potentially by producing large numbers of highly viable seeds.  相似文献   

17.
Hydrology is a major environmental factor determining plant fitness, and hydrological niche segregation (HNS) has been widely used to explain species coexistence. Nevertheless, the distribution of plant species along hydrological gradients does not only depend on their hydrological niches but also depend on their seed dispersal, with dispersal either weakening or reinforcing the effects of HNS on coexistence. However, it is poorly understood how seed dispersal responds to hydrological conditions. To close this gap, we conducted a common‐garden experiment exposing five wind‐dispersed plant species (Bellis perennis, Chenopodium album, Crepis sancta, Hypochaeris glabra, and Hypochaeris radicata) to different hydrological conditions. We quantified the effects of hydrological conditions on seed production and dispersal traits, and simulated seed dispersal distances with a mechanistic dispersal model. We found species‐specific responses of seed production, seed dispersal traits, and predicted dispersal distances to hydrological conditions. Despite these species‐specific responses, there was a general positive relationship between seed production and dispersal distance: Plants growing in favorable hydrological conditions not only produce more seeds but also disperse them over longer distances. This arises mostly because plants growing in favorable environments grow taller and thus disperse their seeds over longer distances. We postulate that the positive relationship between seed production and dispersal may reduce the concentration of each species to the environments favorable for it, thus counteracting species coexistence. Moreover, the resulting asymmetrical gene flow from favorable to stressful habitats may slow down the microevolution of hydrological niches, causing evolutionary niche conservatism. Accounting for context‐dependent seed dispersal should thus improve ecological and evolutionary models for the spatial dynamics of plant populations and communities.  相似文献   

18.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

19.
The larger distribution area of asexuals compared with their sexual relatives in geographical parthenogenesis (GP) scenarios has been widely attributed to the advantages of uniparental reproduction and polyploidy. However, potential disadvantages of sexuals due to their breeding system have received little attention so far. Here, we study the breeding system of five narrowly distributed sexual lineages of Ranunculus notabilis s.l. (R. auricomus complex) and its effects on outcrossing, inbreeding, female fitness, and heterozygosity. We performed selfing and intra‐ and interlineage crossings by bagging 481 flowers (59 garden individuals) followed by germination experiments. We compared seed set and germination rates, and related them to genetic distance and genome‐wide heterozygosity (thousands of RADseq loci). Selfings (2.5%) unveiled a significantly lower seed set compared with intra‐ (69.0%) and interlineage crossings (69.5%). Seed set of intra‐ (65%) compared to interpopulation crossings (78%) was significantly lower. In contrast, all treatments showed comparable germination rates (32%–43%). Generalized linear regressions between seed set and genetic distance revealed positive relationships in general and between lineages, and a negative one within lineages. Seed set was the main decisive factor for female fitness. Germination rates were not related to genetic distance at any level, but were positively associated with heterozygosity in interlineage crossings. Experiments confirmed full crossability and predominant outcrossing among sexual R. notabilis s.l. lineages. However, up to 5% (outliers 15%–31%) of seeds were formed by selfing, probably due to semi‐self‐compatibility in a multi‐locus gametophytic SI system. Less seed set in intrapopulation crossings, and higher seed set and germination rates from crossings of genetically more distant and heterozygous lineages (interlineage) indicate negative inbreeding and positive outbreeding effects. In GP scenarios, sexual species with small and/or isolated populations can suffer from decreased female fitness due to their breeding system. This factor, among others, probably limits range expansion of sexuals.  相似文献   

20.
The phenotypic space encompasses the assemblage of trait combinations yielding well‐suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among‐ and within‐population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among‐population divergence but high among‐individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among‐individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine‐tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed‐related traits advancing flowering time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号