首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous lines of evidence indicate that nuclear calcium concentration ([Ca2+]n) may be controlled independently from cytosolic events by a local machinery. In particular, the perinuclear space between the inner nuclear membrane (INM) and the outer nuclear membrane (ONM) of the nuclear envelope (NE) likely serves as an intracellular store for Ca2+ ions. Since ONM is contiguous with the endoplasmic reticulum (ER), the perinuclear space is adjacent to the lumen of ER thus allowing a direct exchange of ions and factors between the two organelles. Moreover, INM and ONM are fused at the nuclear pore complex (NPC), which provides the only direct passageway between the nucleoplasm and cytoplasm. However, due to the presence of ion channels, exchangers and transporters, it has been generally accepted that nuclear ion fluxes may occur across ONM and INM. Within the INM, the Na+/Ca2+ exchanger (NCX) isoform 1 seems to play an important role in handling Ca2+ through the different nuclear compartments. Particularly, nuclear NCX preferentially allows local Ca2+ flowing from nucleoplasm into NE lumen thanks to the Na+ gradient created by the juxtaposed Na+/K+-ATPase. Such transfer reduces abnormal elevation of [Ca2+]n within the nucleoplasm thus modulating specific transductional pathways and providing a protective mechanism against cell death. Despite very few studies on this issue, here we discuss those making major contribution to the field, also addressing the pathophysiological implication of nuclear NCX malfunction.  相似文献   

2.
Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860). In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN), the outer nuclear membrane (ONM), the inner nuclear membrane (INM) and the cell cytosol (CC). In contrast to Endoplasmic Reticulum (ER) which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM) of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA). The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of the lipids in the ER, in the region adjacent to nucleus, is defining nuclear outer and inner biomembrane composition, is responsible for transport of the cytosolic protein into the nucleus and, replenishment of ER membrane used for vesicular transport.  相似文献   

3.
Nuclear egress, also referred to as nuclear envelope (NE) budding, is a process of transport in which vesicles containing molecular complexes or viral particles leave the nucleus through budding from the inner nuclear membrane (INM) to enter the perinuclear space. Following this event, the perinuclear vesicles (PNVs) fuse with the outer nuclear membrane (ONM), where they release their contents into the cytoplasm. Nuclear egress is thought to participate in many functions such as viral replication, cellular differentiation, and synaptic development. The molecular basis for nuclear egress is now beginning to be elucidated. Here, we observe in the sea urchin gastrula, using serial section transmission electron microscopy, strikingly abundant PNVs containing as yet unidentified granules that resemble the ribonucleoprotein complexes (RNPs) previously observed in similar types of PNVs. Some PNVs were observed in the process of fusion with the ONM where they appeared to release their contents into the cytoplasm. These vesicles were abundantly observed in all three presumptive germ layers. These findings indicate that nuclear egress is likely to be an important mechanism for nucleocytoplasmic transfer during sea urchin development. The sea urchin may be a useful model to characterize further and gain a better understanding of the process of nuclear egress.  相似文献   

4.
Nuclear pore complexes (NPCs) assemble at the end of mitosis during nuclear envelope (NE) reformation and into an intact NE as cells progress through interphase. Although recent studies have shown that NPC formation occurs by two different molecular mechanisms at two distinct cell cycle stages, little is known about the molecular players that mediate the fusion of the outer and inner nuclear membranes to form pores. In this paper, we provide evidence that the transmembrane nucleoporin (Nup), POM121, but not the Nup107-160 complex, is present at new pore assembly sites at a time that coincides with inner nuclear membrane (INM) and outer nuclear membrane (ONM) fusion. Overexpression of POM121 resulted in juxtaposition of the INM and ONM. Additionally, Sun1, an INM protein that is known to interact with the cytoskeleton, was specifically required for interphase assembly and localized with POM121 at forming pores. We propose a model in which POM121 and Sun1 interact transiently to promote early steps of interphase NPC assembly.  相似文献   

5.
6.
In selective autophagy of the nucleus (hereafter nucleophagy), nucleus-derived double-membrane vesicles (NDVs) are formed, sequestered within autophagosomes, and delivered to lysosomes or vacuoles for degradation. In Saccharomyces cerevisiae, the nuclear envelope (NE) protein Atg39 acts as a nucleophagy receptor, which interacts with Atg8 to target NDVs to the forming autophagosomal membranes. In this study, we revealed that Atg39 is anchored to the outer nuclear membrane via its transmembrane domain and also associated with the inner nuclear membrane via membrane-binding amphipathic helices (APHs) in its perinuclear space region, thereby linking these membranes. We also revealed that autophagosome formation-coupled Atg39 crowding causes the NE to protrude toward the cytoplasm, and the tips of the protrusions are pinched off to generate NDVs. The APHs of Atg39 are crucial for Atg39 crowding in the NE and subsequent NE protrusion. These findings suggest that the nucleophagy receptor Atg39 plays pivotal roles in NE deformation during the generation of NDVs to be degraded by nucleophagy.  相似文献   

7.
Integral membrane proteins of the inner nuclear membrane (INM) are inserted into the endoplasmic reticulum membrane during their biogenesis and are then targeted to their final destination. We have used human SUN2 to delineate features that are required for INM targeting and have identified multiple elements that collectively contribute to the efficient localization of SUN2 to the nuclear envelope (NE). One such targeting element is a classical nuclear localization signal (cNLS) present in the N‐terminal, nucleoplasmic domain of SUN2. A second motif proximal to the cNLS is a cluster of arginines that serves coatomer‐mediated retrieval of SUN2 from the Golgi. Unexpectedly, also the C‐terminal, lumenal SUN domain of SUN2 supports NE localization, showing that targeting elements are not limited to cytoplasmic or transmembrane domains of INM proteins. Together, SUN2 represents the first mammalian INM protein relying on a functional cNLS, a Golgi retrieval signal and a perinuclear domain to mediate targeting to the INM.  相似文献   

8.
9.
Integral membrane proteins of the Lap2-emerin-MAN1 (LEM) family have emerged as important components of the inner nuclear membrane (INM) required for the functional and physical integrity of the nuclear envelope. However, like many INM proteins, there is limited understanding of the biochemical interaction networks that enable LEM protein function. Here, we show that Heh2/Man1 can interact with major scaffold components of the nuclear pore complex (NPC), specifically the inner ring complex (IRC), in evolutionarily distant yeasts. Although an N-terminal domain is required for Heh2 targeting to the INM, we demonstrate that more stable interactions with the NPC are mediated by a C-terminal winged helix (WH) domain, thus decoupling INM targeting and NPC binding. Inhibiting Heh2’s interactions with the NPC by deletion of the Heh2 WH domain leads to NPC clustering. Interestingly, Heh2’s association with NPCs can also be disrupted by knocking out several outer ring nucleoporins. Thus, Heh2’s interaction with NPCs depends on the structural integrity of both major NPC scaffold complexes. We propose a model in which Heh2 acts as a sensor of NPC assembly state, which may be important for NPC quality control mechanisms and the segregation of NPCs during cell division.  相似文献   

10.
In eukaryotes, chromatin binding to the inner nuclear membrane (INM) and nuclear pore complexes (NPCs) contributes to spatial organization of the genome and epigenetic programs important for gene expression. In mitosis, chromatin–nuclear envelope (NE) interactions are lost and then formed again as sister chromosomes segregate to postmitotic nuclei. Investigating these processes in S. cerevisiae, we identified temporally and spatially controlled phosphorylation-dependent SUMOylation events that positively regulate postmetaphase chromatin association with the NE. Our work establishes a phosphorylation-mediated targeting mechanism of the SUMO ligase Siz2 to the INM during mitosis, where Siz2 binds to and SUMOylates the VAP protein Scs2. The recruitment of Siz2 through Scs2 is further responsible for a wave of SUMOylation along the INM that supports the assembly and anchorage of subtelomeric chromatin at the INM and localization of an active gene (INO1) to NPCs during the later stages of mitosis and into G1-phase.  相似文献   

11.
Klarsicht/ANC-1/Syne/homology (KASH)/Sad-1/UNC-84 (SUN) protein pairs can act as connectors between cytoplasmic organelles and the nucleoskeleton. Caenorhabditis elegans ZYG-12 and SUN-1 are essential for centrosome–nucleus attachment. Although SUN-1 has a canonical SUN domain, ZYG-12 has a divergent KASH domain. Here, we establish that the ZYG-12 mini KASH domain is functional and, in combination with a portion of coiled-coil domain, is sufficient for nuclear envelope localization. ZYG-12 and SUN-1 are hypothesized to be outer and inner nuclear membrane proteins, respectively, and to interact, but neither their topologies nor their physical interaction has been directly investigated. We show that ZYG-12 is a type II outer nuclear membrane (ONM) protein and that SUN-1 is a type II inner nuclear membrane protein. The proteins interact in the luminal space of the nuclear envelope via the ZYG-12 mini KASH domain and a region of SUN-1 that does not include the SUN domain. SUN-1 is hypothesized to restrict ZYG-12 to the ONM, preventing diffusion through the endoplasmic reticulum. We establish that ZYG-12 is indeed immobile at the ONM by using fluorescence recovery after photobleaching and show that SUN-1 is sufficient to localize ZYG-12 in cells. This work supports current models of KASH/SUN pairs and highlights the diversity in sequence elements defining KASH domains.  相似文献   

12.
S. Singh  M. D. Lazzaro  B. Walles 《Protoplasma》1998,203(3-4):144-152
Summary Placental cells line the ovarian transmitting tract inLilium regale and produce exudates for secretion. Sections through the highly lobed nuclei of these cells reveal the presence of membrane profiles which form vesicles with varying dimensions in cross section. Computer reconstruction of the nucleus reveals that the vesicle profiles form a complex reticulum of tubular cisternae, which spans the whole nucleus, enclosing a maze of continuous lumen space. Connections between the vesicles and the inner nuclear envelope are visible at various points along the nuclear envelope. This complex network of tubules which constitutes the reticulum arises from the inner nuclear membrane. The nuclear reticulum dramatically increases the inner-envelope surface area, comprising 82% of the total membrane perimeter of inner nuclear envelope and nuclear reticulum. The inner nuclear envelope invaginates into the nucleus forming the nuclear reticulum and the outer nuclear envelope evaginates into the endoplasmic reticulum (ER), indicating that there is a continuity between the lumens of the nuclear reticulum and the ER. The nuclear reticulum is labelled with zinc iodide-osmium tetroxide, a staining pattern identical to that seen in the ER. Positive reaction to the zinc iodide-osmium tetroxide indicates that the nuclear reticulum is a site for Ca2+ deposition. The nuclear reticulum forms an extension of the endomembrane system which reaches deep into the nucleoplasm. The lumenal continuity of this system means that there is a channel for communication from the cytoplasm into the nucleoplasm, and that this channel sequesters calcium.Abbreviations ER endoplasmic reticulum - TEM transmission electron microscope - ZIO zinc iodide-osmium tetroxide  相似文献   

13.
Interaction between pUL34 and pUL31 is essential for targeting both proteins to the inner nuclear membrane (INM). Sequences mediating the targeting interaction have been mapped by others with both proteins. We have previously reported identification of charge cluster mutants of herpes simplex virus type 1 UL34 that localize properly to the inner nuclear membrane, indicating interaction with UL31, but fail to complement a UL34 deletion. We have characterized one mutation (CL04) that alters a charge cluster near the N terminus of pUL34 and observed the following. (i) The CL04 mutant has a dominant-negative effect on pUL34 function, indicating disruption of some critical interaction. (ii) In infections with CL04 pUL34, capsids accumulate in close association with the INM, but no perinuclear enveloped viruses, cytoplasmic capsids, or virions or cell surface virions were observed, suggesting that CL04 UL34 does not support INM curvature around the capsid. (iii) Passage of UL34-null virus on a stable cell line that expresses CL04 resulted in selection of extragenic suppressor mutants that grew efficiently using the mutant pUL34. (iv) All extragenic suppressors contained an R229→L mutation in pUL31 that was sufficient to suppress the CL04 phenotype. (v) Immunolocalization and coimmunoprecipitation experiments with truncated forms of pUL34 and pUL31 confirm that N-terminal sequences of pUL34 and a C-terminal domain of pUL31 mediate interaction but not nuclear membrane targeting. pUL34 and pUL31 may make two essential interactions—one for the targeting of the complex to the nuclear envelope and another for nuclear membrane curvature around capsids.Egress of herpesvirus capsids from the nucleus occurs by envelopment of capsids at the inner nuclear membrane (INM) and is followed by de-envelopment at the outer nuclear membrane (ONM). This process can be broken down into a pathway of discrete steps that begin with recruitment of the viral envelopment apparatus to the INM. Herpes simplex virus type 1 (HSV-1) UL34 and UL31 and their homologs in other herpesviruses are required for efficient envelopment at the INM (7, 13, 22, 23, 29). HSV-1 pUL31 and pUL34 are targeted specifically to the INM by a mechanism that requires their interaction with each other (27, 28), and this mutual dependence is a conserved feature of herpesvirus envelopment (9, 14, 27, 28, 32, 33, 39). Localization of these two proteins at the INM results in the recruitment of other proteins, including protein kinase C delta and pUS3, to the nuclear membrane (22, 24, 30). The sequences in HSV-1 pUL34 that mediate interaction with UL31 and that lead to nuclear envelope targeting were mapped to amino acids (aa) 137 to 181 (16). The sequences in the murine cytomegalovirus (MCMV) homolog of UL31, M53, that mediate the nuclear envelope targeting interaction with the UL34 homolog, M50, were mapped to the N-terminal third of the protein in the first of four conserved regions (17), and Schnee et al. subsequently showed that this same region of pUL31 homologs from other families of herpesviruses mediates interaction with the corresponding pUL34 homologs (33).After the targeting of the pUL34/pUL31 complex to the INM, subsequent steps in nuclear egress include, it is thought, (i) local disruption of the nuclear lamina to allow capsid access to the INM, (ii) recognition and docking of capsids by the envelopment apparatus at the INM, (iii) curvature of the inner and outer nuclear membranes around the capsid, (iv) scission of the INM to create an enveloped virion in the space between the INM and ONM, (v) fusion of the virion envelope with the outer nuclear membrane, and (vi) capsid release into the cytoplasm.At least some of the viral and cellular factors critical for nuclear lamina disruption and for de-envelopment fusion have been identified. pUL34, pUL31, and pUS3 of HSV-1 have all been implicated in changes in localization, interaction, and phosphorylation of nuclear lamina components, including lamins A/C and B and the lamina-associated protein, emerin (3, 15, 19, 20, 24, 26, 34, 35). pUS3, pUL31, and glycoproteins B and H have been implicated in de-envelopment of primary virions at the ONM (8, 21, 28, 30, 38).pUL34 and pUL31 are thought to be involved in steps between lamina disruption and de-envelopment, but genetic evidence in infected cells has so far been lacking. Klupp et al. have shown that overexpression of alphaherpesvirus pUL31 and pUL34 in the absence of other viral proteins can induce formation of small vesicles derived from the INM, suggesting a role for these two proteins in membrane curvature around the capsid (12). Tight membrane curvature is an energetically unfavorable event and is thought to be accomplished by coupling curvature to energetically favorable interactions between membrane-bound proteins or protein complexes (reviewed in reference 40). The data of Klupp et al. suggest the possibility that upon recognition of a capsid, pUL31 and pUL34 may interact in a way that induces tight curvature of the INM. Here we present data in support of this hypothesis, showing that a specific point mutation in UL34 induces accumulation of docked capsids at the INM, extragenic suppression of the mutant phenotype is associated with a mutation in UL31, and pUL31 and pUL34 can interact via sequences that are not involved in their INM targeting interaction.We previously published a characterization of a library of 19 charge cluster mutants of pUL34. In each of these mutants, one charge cluster (defined as a group of five consecutive amino acids in which two or more of the residues have charged side chains) was mutated such that the charged residues were replaced by alanine. Six of the 19 charge cluster mutants tested failed to complement replication of UL34-null virus, indicating that they disrupt essential functions of pUL34. Interestingly, five of the six noncomplementing mutants were synthesized at levels comparable to that of wild-type UL34 and localized normally to the nuclear envelope, suggesting that they were unimpaired in their ability to make a nuclear envelope targeting interaction with UL31. In order to identify essential functions of pUL34 downstream of nuclear envelope targeting, we have undertaken a detailed study of the behavior and interactions of these mutants.  相似文献   

14.
Resident integral proteins of the inner nuclear membrane (INM) are synthesized as membrane-integrated proteins on the peripheral endoplasmic reticulum (ER) and are transported to the INM throughout interphase using an unknown trafficking mechanism. To study this transport, we developed a live cell assay that measures the movement of transmembrane reporters from the ER to the INM by rapamycin-mediated trapping at the nuclear lamina. Reporter constructs with small (<30 kD) cytosolic and lumenal domains rapidly accumulated at the INM. However, increasing the size of either domain by 47 kD strongly inhibited movement. Reduced temperature and ATP depletion also inhibited movement, which is characteristic of membrane fusion mechanisms, but pharmacological inhibition of vesicular trafficking had no effect. Because reporter accumulation at the INM was inhibited by antibodies to the nuclear pore membrane protein gp210, our results support a model wherein transport of integral proteins to the INM involves lateral diffusion in the lipid bilayer around the nuclear pore membrane, coupled with active restructuring of the nuclear pore complex.  相似文献   

15.
Multiple unique protein markers sorted to the inner nuclear membrane (INM) from the Autographa californica nucleopolyhedrovirus occlusion-derived virus (ODV) envelope were used to decipher common elements of the sorting pathway of integral membrane proteins from their site of insertion into the membrane of the endoplasmic reticulum (ER) through their transit to the INM. The data show that during viral infection, the viral protein FP25K is a partner for all known ODV envelope proteins and that BV/ODV-E26 (designated E26) is a partner for some, but not all, such proteins. The association with the ER membrane of FP25K, E26, and the cellular INM-sorting protein importin-α-16 is not static; rather, these sorting proteins are actively recruited to the ER membrane based upon requirements of the proteins in transit to the INM. Colocalization analysis using an ODV envelope protein and importin-α-16 shows that during viral infection, importin-α-16 translocates across the pore membrane to the INM and then is incorporated into the virus-induced intranuclear membranes. Thus, the association of importin-α-16 and INM-directed proteins appears to remain at least through protein translocation across the pore membrane to the INM. Overall, the data suggest that multiple levels of regulation facilitate INM-directed protein trafficking, and that proteins participating in this sorting pathway have a dynamic relationship with each other and the membrane of the ER.  相似文献   

16.
17.
Cells infected with herpes simplex virus type 1 (HSV-1) were conventionally embedded or freeze substituted after high-pressure freezing and stained with uranyl acetate. Electron tomograms of capsids attached to or undergoing envelopment at the inner nuclear membrane (INM), capsids within cytoplasmic vesicles near the nuclear membrane, and extracellular virions revealed the following phenomena. (i) Nucleocapsids undergoing envelopment at the INM, or B capsids abutting the INM, were connected to thickened patches of the INM by fibers 8 to 19 nm in length and < or =5 nm in width. The fibers contacted both fivefold symmetrical vertices (pentons) and sixfold symmetrical faces (hexons) of the nucleocapsid, although relative to the respective frequencies of these subunits in the capsid, fibers engaged pentons more frequently than hexons. (ii) Fibers of similar dimensions bridged the virion envelope and surface of the nucleocapsid in perinuclear virions. (iii) The tegument of perinuclear virions was considerably less dense than that of extracellular virions; connecting fibers were observed in the former case but not in the latter. (iv) The prominent external spikes emanating from the envelope of extracellular virions were absent from perinuclear virions. (v) The virion envelope of perinuclear virions appeared denser and thicker than that of extracellular virions. (vi) Vesicles near, but apparently distinct from, the nuclear membrane in single sections were derived from extensions of the perinuclear space as seen in the electron tomograms. These observations suggest very different mechanisms of tegumentation and envelopment in extracellular compared with perinuclear virions and are consistent with application of the final tegument to unenveloped nucleocapsids in a compartment(s) distinct from the perinuclear space.  相似文献   

18.
Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2β as model substrates, we show that INM targeting is energy-dependent but distinct from import of soluble cargo. Accumulation of proteins at the INM relies on both a highly interconnected ER network, which is affected by energy depletion, and an efficient immobilization step at the INM. Nucleoporin depletions suggest that translocation through nuclear pore complexes (NPCs) is rate-limiting and restricted by the central NPC scaffold. Our experimental data combined with mathematical modeling support a diffusion-retention–based mechanism of INM targeting. We experimentally confirmed the sufficiency of diffusion and retention using an artificial reporter lacking natural sorting signals that recapitulates the energy dependence of the process in vivo.  相似文献   

19.
LRP130 (also known as a LRPPRC) is an RNA and single-stranded DNA-binding protein, and recently identified as a candidate gene responsible for the Leigh syndrome, a French-Canadian type cytochrome c oxidase deficiency. However, the biological function of LRP130 still remains largely unresolved. In the present study, we found that the C-terminal half of the mouse LRP130 located within a 120 amino acid sequence (a.a. 845-964) binds to synthetic RNA homopolymers, poly(G), poly(U), and poly(C), as well as r(CUGCC)(6). Assessment of the subcellular localization indicated both nuclear/endoplasmic reticulum (ER) and mitochondrial fractions to be positive. To further analyze the subcellular localization of LRP130, a nuclear/ER fraction was fractionated into the nucleoplasm (NP) and nuclear envelope (NE)/ER, and the latter was further separated into outer nuclear membrane (ONM)/ER and inner nuclear membrane (INM) by treatment with Triton X-100. LRP130 was detectable in all three fractions, and the distribution pattern was in good accordance with that known for ONM/ER proteins. Interestingly, immunostaining of HeLa cells demonstrated nuclear rim staining of LRP130, specifically at the outside of the NE and also at ER, and association of LRP130 with poly(A)(+) RNA was restricted only to the ONM/ER fraction. Overexpression of full-length mouse LRP130 fused with EGFP resulted in nuclear accumulation of poly(A)(+) RNA in HeLa cells. Taking all these results together, it is suggested that LRP130, a novel type of RNA-binding protein, associates with mRNA/mRNP complexes at the outside of NE and ER, and plays a role in control of mRNA metabolisms.  相似文献   

20.
Mouse liver beta-glucuronidase is stabilized within microsomal vesicles by complexation with the accessory protein egasyn. The location of the beta-glucuronidase-egasyn complex and free egasyn within microsomal vesicles was investigated. Surprisingly, it was found that neither the complex nor free egasyn are intrinsic membrane components. Rather, both are either free within the vesicle lumen or only weakly bound to the inside of the vesicle membrane. This conclusion was derived from release studies using low concentrations of Triton X-100 or controlled sonication. Both the intact complex and free egasyn were released in parallel with lumenal proteins, not with intrinsic membrane components. Also, beta-glucuronidase was protected from digestion by proteinase K by the membrane of microsomal vesicles. The hydrophilic nature of both the complex and free egasyn was confirmed by phase separation experiments with the detergent Triton X-114. Egasyn is one of an unusual group of esterases that, despite being located within the lumen or only weakly bound to the lumenal surface of the endoplasmic reticulum, do not enter the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号