首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukocyte extravasation is an essential step during the immune response and requires the destabilization of endothelial junctions. We have shown previously that this process depends in vivo on the dephosphorylation of VE‐cadherin‐Y731. Here, we reveal the underlying mechanism. Leukocyte‐induced stimulation of PECAM‐1 triggers dissociation of the phosphatase SHP2 which then directly targets VE‐cadherin‐Y731. The binding site of PECAM‐1 for SHP2 is needed for VE‐cadherin dephosphorylation and subsequent endocytosis. Importantly, the contribution of PECAM‐1 to leukocyte diapedesis in vitro and in vivo was strictly dependent on the presence of Y731 of VE‐cadherin. In addition to SHP2, dephosphorylation of Y731 required Ca2+‐signaling, non‐muscle myosin II activation, and endothelial cell tension. Since we found that β‐catenin/plakoglobin mask VE‐cadherin‐Y731 and leukocyte docking to endothelial cells exert force on the VE‐cadherin–catenin complex, we propose that leukocytes destabilize junctions by PECAM‐1‐SHP2‐triggered dephosphorylation of VE‐cadherin‐Y731 which becomes accessible by actomyosin‐mediated mechanical force exerted on the VE‐cadherin–catenin complex.  相似文献   

2.
This study aimed to investigate if Telmisartan as a novel N‐cadherin antagonist, can overcome cell migration of cancer cells. We investigated the mechanism and influence of Docetaxel and Telmisartan (as an analogous to ADH‐1, which is a well‐known N‐cadherin antagonist) on cancer cells. The effect of ADH‐1 and Telmisartan on cell attachment in PC3, DU145, MDA‐MB‐468 cell lines using recombinant human N‐cadherin was studied. Cell viability assay was performed to examine the anti‐proliferative effects of Telmisartan, ADH‐1 and Docetaxel. Migration was examined via wound healing assay, and apoptosis was determined by flow cytometry. The expression of AKT‐1 as a downstream gene of N‐cadherin signalling pathway was assayed by real‐time PCR. Treatment of PC3, MDA‐MB‐468 and DU145 cells with Telmisartan (0.1 µM) and ADH‐1 (40 µM) resulted in 50%, 58% and approximately 20% reduction in cell attachment to N‐cadherin coated plate respectively. It shows reduction of cell attachment in PC3 and MDA‐MB‐468 cell lines appeared to be more sensitive than that of DU145 cells to the Telmisartan and ADH‐1 treatments. Telmisartan (0.1 µM) and Docetaxel (0.01 nM) significantly reduced cell migration in PC3 and MDA‐MB‐468 cell lines compared with the control group. Using Real‐time PCR, we found that Telmisartan, Docetaxel and ADH‐1 had significant influence on the AKT‐1 mRNA level. The results of the current study for the first time suggest that, Telmisartan, exerts anti‐proliferation and anti‐migration effects by targeting antagonistically N‐cadherin. Also, these data suggest that Telmisartan as a less expensive alternative to ADH‐1 could potentiate Docetaxel anticancer effects.  相似文献   

3.
Nerve injury‐induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D‐galactosamine (D‐gal)‐induced acute liver failure (ALF) model. When treated with LPS/D‐gal, conventional Ninj1 knock‐out (KO) mice exhibited a mild inflammatory phenotype as compared with wild‐type (WT) mice. Unexpectedly, myeloid‐specific Ninj1 KO mice showed no attenuation of LPS/D‐gal‐induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF‐α‐induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock‐down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF‐α‐mediated apoptosis. Consistent with in vitro results, hepatocyte‐specific ablation of Ninj1 in mice alleviated LPS/D‐gal‐induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D‐gal‐induced ALF by alleviating TNF‐α/TNFR1‐induced cell death.  相似文献   

4.
5.
Infection with the novel severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) and the associated coronavirus disease‐19 (COVID‐19) might affect red blood cells (RBC); possibly altering oxygen supply. However, investigations of cell morphology and RBC rheological parameters during a mild disease course are lacking and thus, the aim of the study. Fifty individuals with mild COVID‐19 disease process were tested after the acute phase of SARS‐CoV‐2 infection (37males/13 females), and the data were compared to n = 42 healthy controls (30 males/12 females). Analysis of venous blood samples, taken at rest, revealed a higher percentage of permanently elongated RBC and membrane extensions in COVID‐19 patients. Haematological parameters and haemoglobin concentration, MCH and MCV in particular, were highly altered in COVID‐19. RBC deformability and deformability under an osmotic gradient were significantly reduced in COVID‐19 patients. Higher RBC‐NOS activation was not capable to at least in part counteract these reductions. Impaired RBC deformability might also be related to morphological changes and/or increased oxidative state. RBC aggregation index remained unaffected. However, higher shear rates were necessary to balance the aggregation‐disaggregation in COVID‐19 patients which might be, among others, related to morphological changes. The data suggest prolonged modifications of the RBC system even during a mild COVID‐19 disease course.  相似文献   

6.
Astilbin, an essential component of Rhizoma smilacis glabrae, exerts significant antioxidant and anti‐inflammatory effects against various autoimmune diseases. We have previously reported that astilbin decreases proliferation and improves differentiation of HaCaT keratinocytes in a psoriatic model. The present study was designed to evaluate the potential therapeutic effects of topical administration of astilbin on an imiquimod (IMQ)‐induced psoriasis‐like murine model and to reveal their underlying mechanisms. Topical administration of astilbin at a lower dose alleviated IMQ‐induced psoriasis‐like skin lesions by inducing the differentiation of epidermal keratinocytes in mice, and the therapeutic effect was even better than that of calcipotriol. Moreover, the inflammatory skin disorder was relieved by astilbin treatment characterized by a reduction in both IL‐17‐producing T cell accumulation and psoriasis‐specific cytokine expression in skin lesions. Furthermore, we found that astilbin inhibited R837‐induced maturation and activation of bone marrow‐derived dendritic cells and decreased the expression of pro‐inflammatory cytokines by downregulating myeloid differentiation factor 88. Our findings provide the convincing evidence that lower doses of astilbin might attenuate psoriasis by interfering with the abnormal activation and differentiation of keratinocytes and accumulation of IL‐17‐producing T cells in skin lesions. Our results strongly support the pre‐clinical application of astilbin for psoriasis treatment.  相似文献   

7.
T and B cells continually recirculate between blood and secondary lymphoid organs. To promote their trans‐endothelial migration (TEM), chemokine receptors control the activity of RHO family small GTPases in part via GTPase‐activating proteins (GAPs). T and B cells express several RHO‐GAPs, the function of most of which remains unknown. The ARHGAP45 GAP is predominantly expressed in hematopoietic cells. To define its in vivo function, we describe two mouse models where ARHGAP45 is ablated systemically or selectively in T cells. We combine their analysis with affinity purification coupled to mass spectrometry to determine the ARHGAP45 interactome in T cells and with time‐lapse and reflection interference contrast microscopy to assess the role of ARGHAP45 in T‐cell polarization and motility. We demonstrate that ARHGAP45 regulates naïve T‐cell deformability and motility. Under physiological conditions, ARHGAP45 controls the entry of naïve T and B cells into lymph nodes whereas under competitive repopulation it further regulates hematopoietic progenitor cell engraftment in the bone marrow, and T‐cell progenitor thymus seeding. Therefore, the ARGHAP45 GAP controls multiple key steps in the life of T and B cells.  相似文献   

8.
Maintaining the architecture, size and composition of an intact stem cell (SC) compartment is crucial for tissue homeostasis and regeneration throughout life. In mammalian skin, elevated expression of the anti‐apoptotic Bcl‐2 protein has been reported in hair follicle (HF) bulge SCs (BSCs), but its impact on SC function is unknown. Here, we show that systemic exposure of mice to the Bcl‐2 antagonist ABT‐199/venetoclax leads to the selective loss of suprabasal BSCs (sbBSCs), thereby disrupting cyclic HF regeneration. RNAseq analysis shows that the pro‐apoptotic BH3‐only proteins BIM and Bmf are upregulated in sbBSCs, explaining their addiction to Bcl‐2 and the marked susceptibility to Bcl‐2 antagonism. In line with these observations, conditional knockout of Bcl‐2 in mouse epidermis elevates apoptosis in BSCs. In contrast, ectopic Bcl‐2 expression blocks apoptosis during HF regression, resulting in the accumulation of quiescent SCs and delaying HF growth in mice. Strikingly, Bcl‐2‐induced changes in size and composition of the HF bulge accelerate tumour formation. Our study identifies a niche‐instructive mechanism of Bcl‐2‐regulated apoptosis response that is required for SC homeostasis and tissue regeneration, and may suppress carcinogenesis.  相似文献   

9.
ObjectivesIn this study, we administered immunity‐and‐matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3‐month‐old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early‐stage Alzheimer''s disease (AD).Materials and methodsClinical‐grade human embryonic stem cell (hESC)‐derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three‐month‐old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3 months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid‐beta (Aβ)‐related pathology was detected by thioflavin‐S staining and Western blot. Quantitative real‐time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA‐seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment.ResultsIMRC administration via tail vein injection significantly ameliorated cognitive deficits in early‐stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo.ConclusionsWe have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.  相似文献   

10.
11.
B‐cell epitope prediction tools are of great medical and commercial interest due to their practical applications in vaccine development and disease diagnostics. The introduction of protein language models (LMs), trained on unprecedented large datasets of protein sequences and structures, tap into a powerful numeric representation that can be exploited to accurately predict local and global protein structural features from amino acid sequences only. In this paper, we present BepiPred‐3.0, a sequence‐based epitope prediction tool that, by exploiting LM embeddings, greatly improves the prediction accuracy for both linear and conformational epitope prediction on several independent test sets. Furthermore, by carefully selecting additional input variables and epitope residue annotation strategy, performance was further improved, thus achieving unprecedented predictive power. Our tool can predict epitopes across hundreds of sequences in minutes. It is freely available as a web server and a standalone package at https://services.healthtech.dtu.dk/service.php?BepiPred-3.0 with a user‐friendly interface to navigate the results.  相似文献   

12.
13.
Cumulative evidence suggests that abnormal differentiation of T lymphocytes influences the pathogenesis of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Thus, understanding the immune activation landscape of CP/CPPS would be helpful for improving therapeutic strategies. Here, we utilized BD™ AbSeq to digitally quantify both the protein and mRNA expression levels in single peripheral blood T cells from two CP/CPPS patients and two healthy controls. We utilized an integrated strategy based on canonical correlation analysis of 10 000+ AbSeq profiles and identified fifteen unique T‐cell subpopulations. Notably, we found that the proportion of cluster 0 in the CP/CPPS group (30.35%) was significantly increased compared with the proportion in the healthy control group (9.38%); cluster 0 was defined as effector T cells based on differentially expressed genes/proteins. Flow cytometry assays confirmed that the proportions of effector T‐cell subpopulations, particularly central memory T cells, T helper (Th)1, Th17 and Th22 cells, in the peripheral blood mononuclear cell populations of patients with CP/CPPS were significantly increased compared with those of healthy controls (P < 0.05), further confirming that aberration of effector T cells possibly leads to or intensifies CP/CPPS. Our results provide novel insights into the underlying mechanisms of CP/CPPS, which will be beneficial for its treatment.  相似文献   

14.
Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time‐keeping network. In the absence of network‐level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood. To characterise its component cells and network structure, we conducted single‐cell sequencing of SCN organotypic slices and identified eleven distinct neuronal sub‐populations across circadian day and night. We defined neuropeptidergic signalling axes between these nodes, and built neuropeptide‐specific network topologies. This revealed their temporal plasticity, being up‐regulated in circadian day. Through intersectional genetics and real‐time imaging, we interrogated the contribution of the Prok2‐ProkR2 neuropeptidergic axis to network‐wide time‐keeping. We showed that Prok2‐ProkR2 signalling acts as a key regulator of SCN period and rhythmicity and contributes to defining the network‐level properties that underpin robust circadian co‐ordination. These results highlight the diverse and distinct contributions of neuropeptide‐modulated communication of temporal information across the SCN.  相似文献   

15.
To identify prostate cancer (PCa) patients with a high risk of recurrence is critical before delivering adjuvant treatment. We developed a classifier based on the Enzalutamide treatment resistance‐related genes to assist the currently available staging system in predicting the recurrence‐free survival (RFS) prognosis of PCa patients. We overlapped the DEGs from two datasets to obtain a more convincing Enzalutamide‐resistance‐related‐gene (ERRG) cluster. The five‐ERRG‐based classifier obtained good predictive values in both the training and validation cohorts. The classifier precisely predicted RFS of patients in four cohorts, independent of patient age, pathological tumour stage, Gleason score and PSA levels. The classifier and the clinicopathological factors were combined to construct a nomogram, which had an increased predictive accuracy than that of each variable alone. Besides, we also compared the differences between high‐ and low‐risk subgroups and found their differences were enriched in cancer progression‐related pathways. The five‐ERRG‐based classifier is a practical and reliable predictor, which adds value to the existing staging system for predicting the RFS prognosis of PCa after radical prostatectomy, enabling physicians to make more informed treatment decisions concerning adjuvant therapy.  相似文献   

16.
Immunotherapy is an attractive approach for treating cancer. T‐cell engagers (TCEs) are a type of immunotherapy that are highly efficacious; however, they are challenged by weak T‐cell activation and short persistence. Therefore, alternative solutions to induce greater activation and persistence of T cells during TCE immunotherapy is needed. Methods to activate T cells include the use of lectins, such as phytohemagglutinin (PHA). PHA has not been used to activate T cells in vivo, for immunotherapy, due to its biological instability and toxicity. An approach to overcome the limitations of PHA while also preserving its function is needed. In this study, we report a liposomal PHA which increased PHA stability, reduced toxicity and performed as an immunotherapeutic that is able to activate T cells for the use in future cancer immunotherapies to circumvent current obstacles in immunosuppression and T‐cell exhaustion.  相似文献   

17.
Efficient degradation of by‐products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER‐associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER‐phagy receptors for ER‐to‐lysosome‐associated degradation (ERLAD). Demannosylation of N‐linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro‐collagen that cycles of de‐/re‐glucosylation of selected N‐glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD‐resistant misfolded proteins for FAM134B‐driven lysosomal delivery. In summary, we show that mannose and glucose processing of N‐glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.  相似文献   

18.
Mutations in VAV1, a gene that encodes a multifunctional protein important for lymphocytes, are found at different frequencies in peripheral T‐cell lymphoma (PTCL), non‐small cell lung cancer, and other tumors. However, their pathobiological significance remains unsettled. After cataloguing 51 cancer‐associated VAV1 mutations, we show here that they can be classified in five subtypes according to functional impact on the three main VAV1 signaling branches, GEF‐dependent activation of RAC1, GEF‐independent adaptor‐like, and tumor suppressor functions. These mutations target new and previously established regulatory layers of the protein, leading to quantitative and qualitative changes in VAV1 signaling output. We also demonstrate that the most frequent VAV1 mutant subtype drives PTCL formation in mice. This process requires the concurrent engagement of two downstream signaling branches that promote the chronic activation and transformation of follicular helper T cells. Collectively, these data reveal the genetic constraints associated with the lymphomagenic potential of VAV1 mutant subsets, similarities with other PTCL driver genes, and potential therapeutic vulnerabilities.  相似文献   

19.
Necroptosis is a programmed necrosis in a caspase‐independent fashion. The role of necroptosis‐related genes (NRGs) in lung cancer remains unknow. Herein, we classified TCGA‐LUAD cohort into two necroptosis‐related subtypes (C1 and C2) by consensus clustering analysis. The result showed that subtype C1 had a favourable prognosis and higher infiltration levels of immune cells. Moreover, subtype C1 was more activated in immune‐associated pathways. Then, we established an NRG prognosis model (NRG score) composed of six NRGs (RIPK3, MLKL, TLR2, TLR4, TNFRSF1A, NDRG2) and divided the cohort into low‐ and high‐risk group. We found that the NRG score was associated with prognosis, tumour immune microenvironment and tumour mutation burden. We also constructed an accurate nomogram model to improve the clinical applicability of NRG score. The result indicated that NRG score may be an independent prognostic marker for lung cancer patients. Taken together, we established a prognosis model that may deepen the understanding of NRGs in lung cancer and provide a basis for developing more effective immunotherapy strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号