首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Food habits are important factors in the adaptation of wild nonhuman primates. White‐headed langurs (Trachypithecus leucocephalus) are endemic to heavily fragmented limestone forests and adapt to unique living environments via flexible food selection strategies. In this study, we compared the dietary data for white‐headed langurs living in Chongzuo White‐headed Langur National Nature Reserve in 2013 and 2016 to evaluate interannual variations in diet. Our results indicated that young leaves were the main food source for langurs, accounting for 52.4% (SD 25.4%) and 65.2% (SD 22.4%) of their diet in 2013 and 2016, respectively. The pattern of plant part consumption was similar between the two years. The consumption of young leaves varied with the availability of young leaves, whereas the consumption of mature leaves was negatively correlated with young leaf availability. The consumption of plant species and diet diversity were higher in 2013 than in 2016. In both 2013 and 2016, although diet diversity varied with the consumption of mature leaves, it was negatively correlated with the consumption and availability of young leaves. Dietary interannual variation is likely to either be linked to phenological variations or indicate that white‐headed langurs have a flexible ecological adaptation coping with habitat fragmentation.  相似文献   

2.
Understanding how animals cope with habitat‐specific environmental factors can assist in species conservation management. We studied the habitat use of four groups (two large and two small groups) of white‐headed langurs (Trachypithecus leucocephalus) living in the forest of southwest Guangxi, China between September 2016 and February 2017 via instantaneous scan sampling. Our results showed that the langurs primarily used hillsides (55.91% ± 6.47%), followed by cliffs (29.70% ± 5.48%), hilltops (7.26% ± 3.55%), flat zones (6.99% ± 6.58%), and farmlands (0.14% ± 0.28%). The langurs moved most frequently on hillsides (49.35% ± 6.97%) and cliffs (35.60% ± 9.17%). The hillsides were more frequently used (66.94% ± 7.86%) during feeding, and the langurs increased the use of hilltops during the rainy season, and the use of cliffs in the dry season. The langurs frequently rested on hillsides (49.75% ± 8.16%) and cliffs (38.93% ± 8.02%). The larger langur group used cliffs more frequently when moving and resting, whereas the small langur group used hillsides more frequently while resting. Langurs in all groups avoided the flat zones for feeding. Their use of habitat reflected the balancing of foraging needs, thermoregulation, and predator avoidance. We conclude that the ecological factors are determinants of habitat use for white‐headed langurs. Our findings suggest that conservation efforts should focus on protecting the vegetation on the hillsides and restoring the vegetation on the flat zones.  相似文献   

3.
Play behavior is a significant trait of immature nonhuman primates (hereafter primates) that plays an important role in sensory, locomotor, socio‐cognitive, and developmental processes. It has been suggested that the function of play is to practice and improve motor skills related to foraging, avoiding predators, attracting mates, raising offspring, and strengthening the skills needed for the formation and maintenance of social bonds. From September 2009 to August 2010, we investigated the play behavior of 1–12 month‐old infant white‐headed langurs (Trachypithecus leucocephalus) a Critically Endangered primate species endemic to China. We carried out this study in the Guangxi Chongzuo White‐headed Langur National Nature Reserve, and recorded 4421 play bouts and 1302 min of play engaged in by seven infants. We found that infants of different ages exhibited different patterns of play behavior. Specifically, nonsocial play behaviors appeared at one month of age, social play behaviors at two months, and an expanded repertoire of social and non‐social play behaviors at three months of age. The frequency and duration of nonsocial play peaked at five months of age and then decreased, while social play gradually increased with age. Nonsocial play did not differ between the sexes, whereas social play showed sex specificity, with a higher frequency and longer duration of social play in male infants compared to female infants. In addition, male and female white‐headed langur infants appeared to prefer individuals of same sex as social playmates, but no obvious choice preference for a specific individual. In conclusion, we provide the first report of play behavior in a population of wild Critically Endangered white‐headed langurs. We suggest that age‐ and sex‐specific differences in play behavior of infants form the bases for age and sex‐based differences in the social interactions of adult langurs.  相似文献   

4.
Site fidelity refers to the restriction of dispersal distance of an animal and its tendency to return to a stationary site. To our knowledge, the homing ability of freshwater turtles and their fidelity is reportedly very low in Asia. We examined mark–recapture data spanning a 4‐year period in Diaoluoshan National Nature Reserve, Hainan Province, China, to investigate the site fidelity and homing behavior of big‐headed turtles Platysternon megacephalum. A total of 11 big‐headed turtles were captured, and all individuals were used in this mark–recapture study. The site fidelity results showed that the adult big‐headed turtles (n = 4) had a 71.43% recapture rate in the original site after their release at the same site, whereas the juveniles (n = 1) showed lower recapture rates (0%). Moreover, the homing behavior results showed that the adults (n = 5) had an 83.33% homing rate after displacement. Adult big‐headed turtles were able to return to their initial capture sites (home) from 150 to 2,400 m away and precisely to their home sites from either upstream or downstream of their capture sites or even from other streams. However, none of the juveniles (n = 4) returned home, despite only being displaced 25–150 m away. These results indicated that the adult big‐headed turtles showed high fidelity to their home site and strong homing ability. In contrast, the juvenile turtles may show an opposite trend but further research is needed.  相似文献   

5.
Food availability and temperature influence energetics of animals and can alter behavioral responses such as foraging and spontaneous activity. Food availability, however, is not necessarily a good indicator of energy (ATP) available for cellular processes. The efficiency of energy transduction from food‐derived substrate to ATP in mitochondria can change with environmental context. Our aim was to determine whether the interaction between food availability and temperature affects mitochondrial efficiency and behavior in zebrafish (Danio rerio). We conducted a fully factorial experiment to test the effects of feeding frequency, acclimation temperature (three weeks to 18 or 28°C), and acute test temperature (18 and 28°C) on whole‐animal oxygen consumption, mitochondrial bioenergetics and efficiency (ADP consumed per oxygen atom; P:O ratio), and behavior (boldness and exploration). We show that infrequently fed (once per day on four days per week) zebrafish have greater mitochondrial efficiency than frequently fed (three times per day on five days per week) animals, particularly when warm‐acclimated. The interaction between temperature and feeding frequency influenced exploration of a novel environment, but not boldness. Both resting rate of producing ATP and scope for increasing it were positively correlated with time spent exploring and distance moved in standardized trials. In contrast, behavior was not associated with whole‐animal aerobic (oxygen consumption) scope, but exploration was positively correlated with resting oxygen consumption rates. We highlight the importance of variation in both metabolic (oxygen consumption) rate and efficiency of producing ATP in determining animal performance and behavior. Oxygen consumption represents energy use, and P:O ratio is a variable that determines how much of that energy is allocated to ATP production. Our results emphasize the need to integrate whole‐animal responses with subcellular traits to evaluate the impact of environmental conditions on behavior and movement.  相似文献   

6.
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.  相似文献   

7.
Testosterone is strongly associated with the annual development of antlers in cervids, but endocrine research on wild, freely breeding ungulates is often done without repeated capture of known‐aged individuals. As a result, our knowledge on how testosterone fluctuates over the course of a lifetime and variation in lifetime patterns among individuals is limited. We investigated patterns of testosterone in a freely breeding population of white‐tailed deer (Odocoileus virginianus) in Alabama, USA, that breeds in January. Testosterone peaked during the height of the breeding season, despite this period occurring approximately 2 months later than in most temperate‐region white‐tailed deer populations. Age‐related differences in testosterone were only prevalent during the breeding season, with bucks ≥3.5 years old having greater testosterone (853 ng/dl ± 96 SE; p = 0.012) than bucks 1.5–2.5 years old (364 ng/dl ± 100 SE). Additionally, an individual''s testosterone level as a yearling was not positively associated with their lifetime maximum testosterone level (p = 0.583), and an individual''s mean testosterone level was positively associated with lifetime testosterone variation (p < 0.001). To our knowledge, our study is one of the first to assess how testosterone early in life might relate to individual testosterone later in life. We believe these data provide insight into lifetime hormonal patterns in cervids, and that these patterns may indicate intraspecific variation of lifetime reproductive strategies.  相似文献   

8.
Natal dispersal is assumed to be a particularly risky movement behavior as individuals transfer, often long distances, from birth site to site of potential first reproduction. Though, because this behavior persists in populations, it is assumed that dispersal increases the fitness of individuals despite the potential for increased risk of mortality. The extent of dispersal risk, however, has rarely been tested, especially for large mammals. Therefore, we aimed to test the relationship between dispersal and survival for both males and females in a large herbivore. Using a radio‐transmittered sample of 398 juvenile male and 276 juvenile female white‐tailed deer (Odocoileus virginianus), we compared survival rates of dispersers and nondispersers. We predicted that dispersing deer would experience greater overall mortality than philopatric deer due to direct transfer‐related risks (e.g., vehicular collision), indirect immigration‐related mortality attributable to colonization of unfamiliar habitat, and increased overwinter mortality associated with energetic costs of movement and unfamiliarity with recently colonized habitat. For both male and female yearlings, survival rates of dispersers (male = 49.9%, female = 64.0%) did not differ from nondispersers (male = 51.6%, female = 70.7%). Only two individuals (both female) were killed by vehicular collision during transfer, and overwinter survival patterns were similar between the two groups. Although dispersal movement likely incurs energetic costs on dispersers, these costs do not necessarily translate to decreased survival. In many species, including white‐tailed deer, dispersal is likely condition‐dependent, such that larger and healthier individuals are more likely to disperse; therefore, costs associated with dispersal are more likely to be borne successfully by those individuals that do disperse. Whether low‐risk dispersal of large mammals is the rule or the exception will require additional research. Further, future research is needed to evaluate nonsurvival fitness‐related costs and benefits of dispersal (e.g., increased reproductive opportunities for dispersers).  相似文献   

9.
Relative role of intrinsic density‐dependent factors (such as inter‐ and intraspecific competition, predation) and extrinsic density‐independent factors (environmental changes) in population dynamics is a key issue in ecology. Density‐dependent mechanisms are considered as important drivers of population dynamics in many vertebrate and insect species; however, their influence on the population dynamics of freshwater invertebrates is not clearly understood. In this study, I examined interannual variations in the abundance of the glacial relict amphipod Monoporeia affinis in a small subarctic lake based on long‐term (2002–2019) monitoring data. The results suggest that the population dynamics of amphipods in the lake is influenced by the combined effects of both intrinsic and extrinsic factors. The reproductive success of amphipod cohorts was inversely related to its initial abundance, indicating it is influenced by density‐dependent factors. Maffinis recruitment was negatively correlated with population density and near‐bottom temperature but positively correlated with food availability, which is defined as the concentration of chlorophyll a. Multiple regression with chlorophyll, temperature, and abundance of parent cohort as independent factors explained about 80% of the variation in the reproductive success of amphipods. The negative correlation between amphipod recruitment and water temperature indicates that the current climate conditions adversely affect the populations of glacial relict amphipods even in cold‐water lakes of the subarctic zone. Results of this study can be useful in environmental assessments to separate population oscillations connected with density‐dependent mechanisms from human‐mediated changes.  相似文献   

10.
Activity patterns and time budgets are 2 important aspects of animal behavior that researchers use to investigate ecological influences on individual behavior. We collected data on activity patterns and time budgets in 1 group of François’ langurs (Trachypithecus francoisi) from August 2003 to July 2004 in the Nonggang Nature Reserve, Guangxi Province, China, via instantaneous scan sampling method with 15-min intervals. The diurnal activity pattern of François’ langurs showed morning and afternoon feeding peaks, with a midday resting peak. Seasonal change was apparent in the activity pattern: 2 significant feeding peaks occurred in the dry season and only 1 significant feeding peak in the rainy season. The group spent an average of 51.5% of the daytime resting. Feeding and moving accounted on average for 23.1% and 17.3% of the activity budget, respectively. Subjects spent little time on social activities, averaging 2% for grooming and 5.5% for playing. Their time budgets showed significant seasonal variation: they spent a greater proportion of time on feeding and less time on resting and grooming in the dry season than in the rainy season. They also differed among different sex-age classes: immatures spent more time playing, whereas adults devoted more time to resting, feeding, and grooming. Correlations between time budgets and food items or food availability clearly indicated that François’ langurs might adopt an energy-maximizing strategy when preferred foods were scarce in the dry season.  相似文献   

11.
Predation is the most common cause of nest failure in birds. While nest predation is relatively well studied in general, our knowledge is unevenly distributed across the globe and taxa, with, for example, limited information on shorebirds breeding in subtropics. Importantly, we know fairly little about the timing of predation within a day. Here, we followed 444 nests of the red‐wattled lapwing (Vanellus indicus), a ground‐nesting shorebird, for a sum of 7,828 days to estimate a nest predation rate, and continuously monitored 230 of these nests for a sum of 2,779 days to reveal how the timing of predation changes over the day and season in a subtropical desert. We found that 312 nests (70%) hatched, 76 nests (17%) were predated, 23 (5%) failed for other reasons, and 33 (7%) had an unknown fate. Daily predation rate was 0.95% (95%CrI: 0.76% – 1.19%), which for a 30‐day long incubation period translates into ~25% (20% – 30%) chance of nest being predated. Such a predation rate is low compared to most other avian species. Predation events (N = 25) were evenly distributed across day and night, with a tendency for increased predation around sunrise, and evenly distributed also across the season, although night predation was more common later in the season, perhaps because predators reduce their activity during daylight to avoid extreme heat. Indeed, nests were never predated when midday ground temperatures exceeded 45℃. Whether the diel activity pattern of resident predators undeniably changes across the breeding season and whether the described predation patterns hold for other populations, species, and geographical regions await future investigations.  相似文献   

12.
Human disturbance directly affects animal populations and communities, but indirect effects of disturbance on species behaviors are less well understood. For instance, disturbance may alter predator activity and cause knock‐on effects to predator‐sensitive foraging in prey. Camera traps provide an emerging opportunity to investigate such disturbance‐mediated impacts to animal behaviors across multiple scales. We used camera trap data to test predictions about predator‐sensitive behavior in three ungulate species (caribou Rangifer tarandus; white‐tailed deer, Odocoileus virginianus; moose, Alces alces) across two western boreal forest landscapes varying in disturbance. We quantified behavior as the number of camera trap photos per detection event and tested its relationship to inferred human‐mediated predation risk between a landscape with greater industrial disturbance and predator activity and a “control” landscape with lower human and predator activity. We also assessed the finer‐scale influence on behavior of variation in predation risk (relative to habitat variation) across camera sites within the more disturbed landscape. We predicted that animals in areas with greater predation risk (e.g., more wolf activity, less cover) would travel faster past cameras and generate fewer photos per detection event, while animals in areas with less predation risk would linger (rest, forage, investigate), generating more photos per event. Our predictions were supported at the landscape‐level, as caribou and moose had more photos per event in the control landscape where disturbance‐mediated predation risk was lower. At a finer‐scale within the disturbed landscape, no prey species showed a significant behavioral response to wolf activity, but the number of photos per event decreased for white‐tailed deer with increasing line of sight (m) along seismic lines (i.e., decreasing visual cover), consistent with a predator‐sensitive response. The presence of juveniles was associated with shorter behavioral events for caribou and moose, suggesting greater predator sensitivity for females with calves. Only moose demonstrated a positive behavioral association (i.e., longer events) with vegetation productivity (16‐day NDVI), suggesting that for other species bottom‐up influences of forage availability were generally weaker than top‐down influences from predation risk. Behavioral insights can be gleaned from camera trap surveys and provide complementary information about animal responses to predation risk, and thus about the indirect impacts of human disturbances on predator–prey interactions.  相似文献   

13.
In long‐lived species, reproductive skipping is a common strategy whereby sexually mature animals skip a breeding season, potentially reducing population growth. This may be an adaptive decision to protect survival, or a non‐adaptive decision driven by individual‐specific constraints. Understanding the presence and drivers of reproductive skipping behavior can be important for effective population management, yet in many species such as the endangered African penguin (Spheniscus demersus), these factors remain unknown. This study uses multistate mark‐recapture methods to estimate African penguin survival and breeding probabilities at two colonies between 2013 and 2020. Overall, survival (mean ± SE) was higher at Stony Point (0.82 ± 0.01) than at Robben Island (0.77 ± 0.02). Inter‐colony differences were linked to food availability; under decreasing sardine (Sardinops sagax) abundance, survival decreased at Robben Island and increased at Stony Point. Additionally, reproductive skipping was evident across both colonies; at Robben Island the probability of a breeder becoming a nonbreeder was ~0.22, versus ~0.1 at Stony Point. Penguins skipping reproduction had a lower probability of future breeding than breeding individuals; this lack of adaptive benefit suggests reproductive skipping is driven by individual‐specific constraints. Lower survival and breeding propensity at Robben Island places this colony in greater need of conservation action. However, further research on the drivers of inter‐colony differences is needed.  相似文献   

14.
Studying the dietary flexibility of primates that live in human‐modified environments is crucial for understanding their ecological adaptations as well as developing management and conservation plans. Southern gelada (Theropithecus gelada obscurus) is an endemic little‐known subspecies of gelada that inhabits human‐modified landscapes in the northern central highlands of Ethiopia. During an 18‐month period, we conducted this intensive study in an unprotected area of a human‐modified landscape at Kosheme in Wollo to investigate the feeding ecology of southern geladas and their dietary responses to seasonal variations. We quantified the monthly and seasonal diet data from a band of southern geladas using instantaneous scan sampling method at 15‐min intervals, and green grass phenology and availability using visual inspection from the randomly selected permanent plots. The overall average diet of southern geladas at Kosheme constituted grass blades 55.4%, grass undergrounds 13.2%, grass bulbs 5.6%, grass seeds 5.4%, herb leaves 4.0, fruits 7.3%, and cereal crops 5.6%. Grass blade consumption increased with increasing green grass availability, while underground food consumption increased with decreasing green grass availability, and vice versa. Southern geladas spent significantly more time feeding on the grass blades and herb leaves and significantly less time on bulbs during the wet season than the dry season. Underground grass items (rhizomes and corms) were not consumed during the wet season, but made up 22.3% of the dry season diet. Thus, although grass blades are staple diet items for geladas, underground diet items are important “fallback foods” at Kosheme. Our result shows insights into the dietary flexibility southern geladas adopt to cope with human‐modified landscapes of the north‐central Ethiopian Highlands. Thus, the study contributes to a better understanding of how changing environments shape primate ecology and evolution.  相似文献   

15.
Radio‐frequency identification (RFID) technology has gained popularity in ornithological studies as a way to collect large quantities of data to answer specific biological questions, but few published studies report methodologies used for validating the accuracy of RFID data. Further, connections between the RFID data and the behaviors of interest in a study are not always clearly established. These methodological deficiencies may seriously impact a study''s results and subsequent interpretation. We built RFID‐equipped bird feeders and mounted them at three sites in Tompkins County, New York. We deployed passive integrated transponder tags on black‐capped chickadees, tufted titmice, and white‐breasted nuthatches and used a GoPro video camera to record the three tagged species at the feeders. We then reviewed the video to determine the accuracy of the RFID reader and understand the birds’ behavior at the feeders. We found that our RFID system recorded only 34.2% of all visits by tagged birds (n = 237) and that RFID detection increased with the length of a visit. We also found that our three tagged species and two other species that visited the feeders, American goldfinch and hairy woodpecker, retrieved food in 79.5% of their visits. Chickadees, titmice, nuthatches, and woodpeckers spent, on average, 2.3 s at feeders to collect one seed per visit. In contrast, goldfinches spent an average of 9.0 s at feeders and consumed up to 30 seeds per visit. Our results demonstrate the importance of confirming detection accuracy and that video can be used to identify behavioral characteristics associated with an RFID reader''s detections. This simple—yet time‐intensive—method for assessing the accuracy and biological meaning of RFID data is useful for ornithological studies but can be used in research focusing on various taxa and study systems.  相似文献   

16.
White‐nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long‐term monitoring data to examine WNS‐related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist‐net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population‐level response to WNS, we investigated post‐WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long‐eared bat), and Perimyotis subflavus (tri‐colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long‐term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS‐affected bat populations.  相似文献   

17.
Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white‐tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white‐tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white‐tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population‐level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86–0.92), diet (B = 3.1–4.9; α = 0.76–1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population‐level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population‐level plasticity in resource use.  相似文献   

18.
The demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS‐tagging data, climate data, remote‐sensed vegetation data, and bird‐banding data to better understand the dynamics of black‐headed grosbeak (Pheucticus melanocephalus) populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992–2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates). We developed a novel integrated population model with population state informed by adult capture data, recruitment rates informed by age‐specific capture data and climate covariates, and survival rates informed by adult capture–mark–recapture data and climate covariates. Population size was relatively variable among years for Coastal California, where numbers of recruits and survivors were positively correlated, and years of population increase were largely driven by recruitment. In the Sierra Nevada, population size was more consistent and showed stronger evidence of population regulation (numbers of recruits and survivors negatively correlated). Neither region showed evidence of long‐term population trend. We found only weak support for most climate–demographic rate relationships. However, recruitment rates for the Coastal California region were higher when rainfall was relatively early on the molting grounds and when wintering grounds were relatively cool and wet. We suggest that our approach of integrating movement, climate, and demographic data within a novel modeling framework can provide a useful method for better understanding the dynamics of broadly distributed migratory species.  相似文献   

19.
Understanding key overlap zones and habitats which are intensively shared by species in space and time is crucial as it provides vital information to inform spatial conservation with maximum benefits. The advent of high‐resolution GPS technologies associated with new analytical algorithms is revolutionizing studies underpinning species spatial and social interaction patterns within ecosystems. Here, using a robust home range estimation algorithm, the autocorrelated kernel density estimator (AKDE) equipped with an equally powerful home range overlap metric, the Bhattacharyya''s coefficient (BC), we provide one of the first attempts to estimate and delineate spatial home range overlap zones for critically endangered African white‐backed vultures to inform conservation planning. Six vultures were captured in Hwange National Park using a modified cannon net system after which they were tagged and tracked with high‐resolution GPS backpacks. Overall, results suggested weaker average home range overlaps based on both the pooled data (0.38 ± 0.26), wet non‐breeding seasonal data (0.32 ± 0.23), and dry breeding season data (0.34 ± 0.28). Vultures 4, 5, and 6 consistently revealed higher home range overlaps across all the scales with values ranging between 0.60 and 0.99. Individual vultures showed consistence in space use patterns as suggested by high between‐season home range overlaps, an indication that they may be largely resident within the Hwange ecosystem. Importantly, we also demonstrate that home range overlapping geographic zones are all concentrated within the protected area of Hwange National Park. Our study provides some of the first results on African vulture home range overlaps and segregation patterns in the savanna ecosystem based on unbiased telemetry data and rigorous analytical algorithms. Such knowledge may provide vital insights for prioritizing conservation efforts of key geographic overlap zones to derive maximum conservation benefits especially when targeting wide‐ranging and critically endangered African white‐backed vultures. To this end, spatial overlap zones estimated here, although based on a small sample size, could provide a strong foundation upon which other downstream social and ecological questions can be explored further to expand our understanding on shared space use mechanisms among African vulture species.  相似文献   

20.
邦亮东黑冠长臂猿日食性与活动节律的季节性变化   总被引:2,自引:0,他引:2  
日食性变化和活动节律是动物行为的重要方面,通过对日食性变化与活动节律的研究,可以了解食物、温度和光照时间等环境因素的变化对动物行为的影响,以及动物在行为上的应对策略。2009 年1 -12 月,在广西靖西县邦亮东部黑冠长臂猿自治区级自然保护区内,采用瞬时扫描取样法对2 群东黑冠长臂猿觅食行为和活动节律进行了研究。结果显示,东黑冠长臂猿的活动和食性在旱季和雨季都具有明显的节律。鸣叫只发生在12:00之前,但旱季的鸣叫时间偏晚。在日节律上,东黑冠长臂猿在离开过夜树后和进入过夜树前各有一个取食高峰,07:00 喜欢取食果实和无花果,16:00 也选择更多的果实,但无花果较少,13:00 - 15:00 取食更多的叶和芽。在10:00 - 12:00,其用于休息和社会活动的时间增加。在雨季,东黑冠长臂猿以果实和无花果为主要食物,并且花大量时间觅食无脊椎动物;但在旱季,其食物以叶和芽为主。与之相适应,东黑冠长臂猿在旱季通过减少移动增加休息来节约能量开支和应对低温,同时它们增加取食的时间以获得等价的能量和营养。雨季时社会行为的比例明显高于旱季,而且其高峰出现在08:00 - 10:00,但旱季社会行为主要出现在11:00 - 14:00。在雨季东黑冠长臂猿没有出现休息高峰,相反在旱季10:00 左右出现一个明显的休息高峰。上述行为节律体现了东黑冠长臂猿对环境季节性变化的良好适应,使其能够在寒冷并且退化的喀斯特森林中生存繁衍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号