首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Mitonuclear discordance is a frequently encountered pattern in phylogeographic studies and occurs when mitochondrial and nuclear DNA display conflicting signals. Discordance among these genetic markers can be caused by several factors including confounded taxonomies, gene flow, and incomplete lineage sorting. In this study, we present a strong case of mitonuclear discordance in a species complex of toads (Bufonidae: Incilius coccifer complex) found in the Chortís Block of Central America. To determine the cause of mitonuclear discordance in this complex, we used spatially explicit genetic data to test species limits and relationships, characterize demographic history, and quantify gene flow. We found extensive mitonuclear discordance among the three recognized species within this group, especially in populations within the Chortís Highlands of Honduras. Our data reveal nuclear introgression within the Chortís Highlands populations that was most probably driven by cyclical range expansions due to climatic fluctuations. Though we determined introgression occurred within the nuclear genome, our data suggest that it is not the key factor in driving mitonuclear discordance in the entire species complex. Rather, due to a lack of discernible geographic pattern between mitochondrial and nuclear DNA, as well as a relatively recent divergence time of this complex, we concluded that mitonuclear discordance has been caused by incomplete lineage sorting. Our study provides a framework to test sources of mitonuclear discordance and highlights the importance of using multiple marker types to test species boundaries in cryptic species.  相似文献   

2.
To test the hypothesis that nonphysical barriers to gene flow play a role in the divergence of low-latitude seabird populations, we applied phylogeographic methods to mitochondrial control region sequence variation in a global sample of masked boobies (Sula dactylatra). In accord with previous studies, we found that Indo-Pacific and Atlantic haplotypes form two divergent lineages, excluding one haplotype previously attributed to secondary contact between the Indian Ocean and the Caribbean Sea. Within the Indo-Pacific and the Atlantic, we found a relatively large number of haplotypes, many of which were unique to a single population. Although haplotypes from most populations were found in more than one higher-level clade, nested clade analysis revealed a significant association between clades and geography for the majority of higher-level clades, most often interpreted as a consequence of isolation by distance. We found low levels of gene flow within Indo-Pacific and Atlantic populations, and a significant correlation between gene flow and geographical distance among Indo-Pacific populations. We estimate that Indo-Pacific masked boobies experienced rapid population growth approximately 180,000 years ago and that the majority of Indo-Pacific and Atlantic populations diverged within the last approximately 115,000 years. These combined data suggest that the predominant pattern between Indo-Pacific and Atlantic populations is long-term isolation by physical barriers to gene flow. In contrast, populations within these regions appear to have diverged despite few obvious physical barriers to gene flow, perhaps as a consequence of limited natal dispersal combined with local adaptation and/or genetic drift.  相似文献   

3.
We investigated the taxonomic significance of nest shape and its putative role in speciation in Trigona (Heterotrigona) carbonaria and T. (H.) hockingsi, two sibling species of stingless bee species from eastern Australia. These species are primarily distinguished by their nest architecture, as in all other respects they are nearly identical. We genotyped 130 colonies from six locations in Queensland at 13 microsatellite loci together with 106 additional colonies from six other Indo-Pacific Trigona species. Whether they were present in allopatry or in sympatry, colonies that displayed the T. carbonaria or the T. hockingsi nest architecture could be unambiguously differentiated at the genetic level. However, T. hockingsi colonies were classifiable into two highly differentiated paraphyletic and geographically separate populations, one in northern and one in southern Queensland. These two populations probably belong to two distinct species, T. hockingsi and T. davenporti nov. sp. Our results suggest that nest architecture characters are relevant but not sufficient criteria to identify species in this group. Consequently, modifications of nest architecture are probably not of prime importance in the speciation process of Australian stingless bees, although nest architecture differences probably result from relatively simple mechanisms. The rare interspecific hybrid colonies detected did not display a nest with an intermediate form between T. hockingsi and T. carbonaria.  相似文献   

4.
Forest trees frequently form species complexes, complicating taxonomic classification and gene pool management. This is certainly the case in Eucalyptus, and well exemplified by the Eucalyptus globulus complex. This ecologically and economically significant complex comprises four taxa (sspp. bicostata, globulus, maidenii, pseudoglobulus) that are geographically and morphologically distinct, but linked by extensive “intergrade” populations. To resolve their genetic affinities, nine microsatellites were used to genotype 1200 trees from throughout the natural range of the complex in Australia, representing 33 morphological core and intergrade populations. There was significant spatial genetic structure (FST = 0.10), but variation was continuous. High genetic diversity in southern ssp. maidenii indicates that this region is the center of origin. Genetic diversity decreases and population differentiation increases with distance from this area, suggesting that drift is a major evolutionary process. Many of the intergrade populations, along with other populations morphologically classified as ssp. pseudoglobulus or ssp. globulus, belong to a “cryptic genetic entity” that is genetically and geographically intermediate between core ssp. bicostata, ssp. maidenii, and ssp. globulus. Geography, rather than morphology, therefore, is the best predictor of overall genetic affinities within the complex and should be used to classify germplasm into management units for conservation and breeding purposes.  相似文献   

5.
Multipartite symbioses are complex symbiotic relationships involving multiple interacting partners. These types of partnerships provide excellent opportunities in which to apply a comparative approach to identify common historical patterns of population differentiation and species-specific life history traits. Using three symbiotic blue-stain fungal species (Ophiostomatacea) associated with outbreaking populations of the mountain pine beetle (Dendroctonus ponderosae Hopkins) in western Canada, we applied phylogenetic, population genetic and demographic approaches to clarify phylogeographic patterns among the three fungal species. Broadly, the three species showed significant population differentiation, forming northern and southern populations, despite dramatic differences in haplotype diversity. Finer structuring and population demographic patterns were less consistent, showing some interspecific incongruence. By contrasting these species simultaneously, we were able to identify differences in recombination rate and ecological traits that can explain the observed patterns of incongruence among the fungal species. By applying a comparative approach to partners of a multipartite symbiosis, we were able to distinguish congruent population structuring and species-specific differences that help us to understand the complexity and evolution of this symbiotic system.  相似文献   

6.
The role of geological events and Pleistocene climatic fluctuations as drivers of current patterns of genetic variation in extant species has been a topic of continued interest among evolutionary biologists. Nevertheless, comprehensive studies of widely distributed species are still rare, especially from Asia. Using geographically extensive sampling of many individuals and a large number of nuclear single nucleotide polymorphisms (SNPs), we studied the phylogeography and historical demography of Hyla annectans populations in southern China. Thirty‐five sampled populations were grouped into seven clearly defined genetic clusters that closely match phenotype‐based subspecies classification. These lineages diverged 2.32–5.23 million years ago (Ma), a timing that closely aligns with the rapid and drastic uplifting of the Qinghai‐Tibet Plateau and adjacent southwest China. Demographic analyses and species distribution models indicate that different populations of this species have responded differently to past climatic changes. In the Hengduan Mountains, most populations experienced a bottleneck, whereas the populations located outside of the Hengduan Mountains have gradually declined in size since the end of the last glaciation. In addition, the levels of phenotypic and genetic divergence were strongly correlated across major clades. These results highlight the combined effects of geological events and past climatic fluctuations, as well as natural selection, as drivers of contemporary patterns of genetic and phenotypic variation in a widely distributed anuran in Asia.  相似文献   

7.
The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from a biogeographic boundary, geographical distance and the distribution of suitable habitat were investigated in Axoclinus nigricaudus, a small subtidal rock-reef fish, throughout its range in the Gulf of California. A 408-bp fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between 28 of 36 possible combinations of population pairs. Phylogenetic analyses, hierarchical analyses of variance and a modified Mantel test substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics, including temperature and salinity, but does not coincide with known oceanographic circulation patterns or any known historic barriers. There was an overall relationship of increasing genetic distance with increasing geographical distance between population pairs, in a manner consistent with isolation-by-distance. A significant habitat-by-geographical-distance interaction term indicated that, for a given geographical distance, populations separated by discontinuous habitat (sand) are more distinct genetically than are populations separated by continuous habitat (rock). In addition, populations separated by deep open waters were more genetically distinct than populations separated by continuous habitat (rock). These results indicate that levels of genetic differentiation among populations of A. nigricaudus cannot be explained by a single factor, but are due to the combined influences of biogeography, geographical distance and availability of suitable habitat.  相似文献   

8.
Highly mobile species that thrive in a wide range of habitats are expected to show little genetic differentiation across their range. A limited but growing number of studies have revealed that patterns of broad‐scale genetic differentiation can and do emerge in vagile, continuously distributed species. However, these patterns are complex and often shaped by both historical and ecological factors. Comprehensive surveys of genetic variation at a broad scale and at high resolution are useful for detecting cryptic spatial genetic structure and for investigating the relative roles of historical and ecological processes in structuring widespread, highly mobile species. In this study, we analysed 10 microsatellite loci from over 1900 samples collected across the full range of mule deer (Odocoileus hemionus), one of the most widely distributed and abundant of all large mammal species in North America. Through both individual‐ and population‐based analyses, we found evidence for three main genetic lineages, one corresponding to the ‘mule deer’ morphological type and two to the ‘black‐tailed deer’ type. Historical biogeographic events likely are the primary drivers of genetic divergence in this species; boundaries of the three lineages correspond well with predictions based on Pleistocene glacial cycles, and substructure within each lineage demonstrates island vicariance. However, across large geographic areas, including the entire mule deer lineage, we found that genetic variation fit an isolation‐by‐distance pattern rather than discrete clusters. A lack of genetic structure across wide geographic areas of the continental west indicates that ecological processes have not resulted in restrictions to gene flow sufficient for spatial genetic structure to emerge. Our results have important implications for our understanding of evolutionary mechanisms of divergence, as well as for taxonomy, conservation and management.  相似文献   

9.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation (Radj2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea (Radj2 = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.  相似文献   

10.
The neotropical cichlid genus Gymnogeophagus is distributed in the Río de la Plata basin and in Dos Patos and Merín coastal lagoons on the border between Uruguay and southern Brazil. A phylogeographic approach based on mitochondrial cytochrome b analysis was performed to assess the patterns and processes of differentiation in this taxon. Gymnogeophagus gymnogenys showed high haplotype diversity (H = 0.992) and corrected mtDNA genetic distances ranged from 0 to 5.3%. Our analyses yielded robust support for the existence of four monophyletic groups within G. gymnogenys from the analyzed basins. No correlation between the aforementioned clades and geographic structure was found, since individuals belonging to different phylogenetic clades inhabit the same locality. The phylogeographic approach presented here showed that these four phylogroups (1, 2, 3 and 4) were sister groups. Our present findings would corroborate that G. gymnogenys could be integrated by different phylogenetic lineages, showing an explosive differentiation pattern and confirming the hypothesis that this taxon constitutes a species complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号