首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NG,NG-Dimethylarginine (asymmetric dimethylarginine, ADMA) can be directly separated and measured from deproteinized human plasma using o-phthaldialdehyde-mercaptoethanol (OPA reagent) as a fluorogenic reagent by reversed-phase high-performance liquid chromatography. The mean recovery of ADMA was over 96% and the inter- and intra-assay coefficients of variation of amounts were lower than 3.80% and those of retention time were below 0.37% for five runs. The detection limit of the assay is 1 pmol when the signal-to-noise is 3:1. It was observed that the concentration of ADMA was significantly elevated in plasma of patients with pregnancy induced hypertension (PIH) in contrast to healthy pregnant women.  相似文献   

2.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthesis, whereas l-arginine (Arg) and l-homoarginine (hArg) serve as substrates for NO synthesis. ADMA and other methylated arginines are generally believed to exclusively derive from guanidine (N G)-methylated arginine residues in proteins by protein arginine methyltransferases (PRMTs) that use S-adenosylmethionine (SAM) as the methyl donor. l-Lysine is known for decades as a precursor for hArg, but only recent studies indicate that arginine:glycine amidinotransferase (AGAT) is responsible for the synthesis of hArg. AGAT catalyzes the formation of guanidinoacetate (GAA) that is methylated to creatine by guanidinoacetate methyltransferase (GAMT) which also uses SAM. The aim of the present study was to learn more about the mechanisms of ADMA and hArg formation in humans. Especially, we hypothesized that ADMA is produced by N G-methylation of free Arg in addition to the known PRMTs-involving mechanism. In knockout mouse models of AGAT- and GAMT-deficiency, we investigated the contribution of these enzymes to hArg synthesis. Arg infusion (0.5 g/kg, 30 min) in children (n = 11) and ingestion of high-fat protein meals by overweight men (n = 10) were used to study acute effects on ADMA and hArg synthesis. Daily Arg ingestion (10 g) or placebo for 3 or 6 months by patients suffering from peripheral arterial occlusive disease (PAOD, n = 20) or coronary artery disease (CAD, n = 30) was used to study chronic effects of Arg on ADMA synthesis. Mass spectrometric methods were used to measure all biochemical parameters in plasma and urine samples. In mice, AGAT but not GAMT was found to contribute to plasma hArg, while ADMA synthesis was independent of AGAT and GAMT. Arg infusion acutely increased plasma Arg, hArg and ADMA concentrations, but decreased the plasma hArg/ADMA ratio. High-fat protein meals acutely increased plasma Arg, hArg, ADMA concentrations, as well as the plasma hArg/ADMA ratio. In the PAOD and CAD studies, plasma Arg concentration increased in the verum compared to the placebo groups. Plasma ADMA concentration increased only in the PAOD patients who received Arg. Our study suggests that in humans a minor fraction of free Arg is rapidly metabolized to ADMA and hArg. In mice, GAMT and N G-methyltransferases contribute to ADMA and hArg synthesis from Arg, whereas AGAT is involved in the synthesis of hArg but not of ADMA. The underlying biochemical mechanisms remain still elusive.  相似文献   

3.
The l-arginine metabolites methylated at the guanidino moiety, such as NG-monomethyl-l-arginine (LNMMA), asymmetric NG,NG-dimethyl-l-arginine (ADMA), and symmetric NG,NG'-dimethyl-l-arginine (SDMA), are long known to be present in human plasma. Far less is known about the structural isomer of LNMMA, Nδ-monomethyl-l-arginine (δ-MMA). In prior work, it has been detected in yeast proteins, but it has not been investigated in mammalian plasma or cells. In this work, we present a method for the simultaneous and unambiguous quantification of LNMMA and δ-MMA in human plasma that is capable of detecting δ-MMA separately from LNMMA. The method comprises a simple protein precipitation sample preparation, hydrophilic interaction liquid chromatography (HILIC) gradient elution on an unmodified silica column, and triple stage mass spectrometric detection. Stable isotope-labeled D6-SDMA was used as internal standard. The calibration ranges were 25–1000 nmol/L for LNMMA and 5–350 nmol/L for δ-MMA. The intra- and inter-batch precision determinations resulted in relative standard deviations of less than 12% for both compounds with accuracies of less than 6% deviation from the expected values. In a pilot study enrolling 10 healthy volunteers, mean concentrations of 48.0 ± 7.4 nmol/L for LNMMA and 27.4 ± 7.7 nmol/L for δ-MMA were found.  相似文献   

4.
We produced a monoclonal antibody (mAb) against N G,N G-dimethyl-L-arginine (asymmetric dimethylarginine: ADMA), an endogenous competitive inhibitor of nitric oxide synthase (NOS), and developed an enzyme-linked immunosorbent assay (ELISA). The competitive ELISA method using the mAb determined 5 nM–100 nM ADMA, and ADMA levels in human plasma and urine were found to be 0.78 μM and 51.3 μmol/g of creatinine respectively.  相似文献   

5.
N G,N G-Dimethyl-L-arginine (asymmetric dimethylarginine: ADMA) is an endogenous competitive inhibitor of nitric oxide synthase (NOS). Plasma ADMA concentrations have been reported to increase in connection with diseases associated with an impaired endothelial L-arginine/NO pathway. In this study, we investigated the metabolism of ADMA in circulating blood cell populations to elucidate the regulatory mechanism of elevation of plasma ADMA, a novel risk factor for cardiovascular disease. We found by RT-PCR and Western blot analyses that protein arginine methyltransferase (PRMT)1 and dimethylarginine dimethylaminohydrolase (DDAH)-1, responsible for the biosynthesis and degradation of ADMA respectively, are expressed in erythrocytes (ECs), leukocytes, and platelets. We also identified a major ADMA-containing protein in ECs as catalase, confirmed by GST-pull down assay to bind to PRMT1 in vitro. This is the first report that the ADMA-metabolizing system, including the arginine methylation of proteins and the breakdown of free ADMA, occurs in circulating blood cell-populations, and that catalase in ECs might be a potential protein targeted by PRMT1.  相似文献   

6.
Nitric oxide is an ubiquitary cell signaling substance. Its enzymatic production rate by nitric oxide synthase is regulated by the concentrations of the substrate l-arginine and the competitive inhibitor asymmetric dimethylarginine (ADMA). A newly recognized elimination pathway for ADMA is the transamination to α-keto-δ-(NG,NG-dimethylguanidino)valeric acid (DMGV) by the enzyme alanine-glyoxylate aminotransferase 2 (AGXT2). This pathway has been proven to be relevant for nitric oxide regulation, but up to now no method exists for the determination of DMGV in biological fluids. We have developed a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the quantification of DMGV. D6-DMGV was used as internal standard. Samples were purified online by column switching, and separation was achieved on a porous graphitic carbon column. The calibration was linear over ranges of 10 to 200 nmol/L for plasma and 0.1 to 20 μmol/L for urine. The intra- and interday accuracies and precisions in plasma and urine were better than 10%. In plasma samples, DMGV was present in concentrations between 19.1 and 77.5 nmol/L. In urine samples, concentrations between 0.0114 and 1.03 μmol/mmol creatinine were found. This method can be used as a tool for the scientific investigation of the ADMA conversion to DMGV via the enzyme AGXT2.  相似文献   

7.
4-Methylumbelliferyl esters of amino acid derivatives have been synthesized using the carbodiimide, disulphite and carbonate methods. Of these, the first was shown capable of preparing 2-naphthyl and 4-methylumbelliferyl esters of benzoylglycine, benzyloxycarbonyl glycine and benzyloxycarbonyl-citrulline but not of benzoyl-NG-nitroarginine. 2-Naphthyl benzoyl-NG-nitroargininate was prepared successfully using di(2-naphthyl)sulphite. Bis(4-methylumbelliferyl)sulphite could not be prepared but 4-methylumbelliferyl benzoyl-NG-nitroargininate was obtained by the use of an equilibrium method using diphenyl sulphite in the presence of 4-methylumbelliferone. A new reagent, phenyl 4-methylumbelliferyl carbonate, was synthesized and used for the preparation of the 4-methylumbelliferyl esters of benzoylglycine, benzyloxycarbonylglycine and benzoyl-NG-nitroarginine. The 4-methylumbelliferyl esters of benzyloxycarbonylglycine and benzyloxycarbonylcitrulline were shown to be good substrates for the assay of proteases, including chymotrypsin (EC 3.4.21.1) and trypsin (EC 3.4.21.4). Disadvantages of 4-methylumbelliferyl esters are discussed.  相似文献   

8.
Purposel-Arginine (ARG) is converted to nitric oxide (NO) and l-citrulline (CIT) by endothelial nitric oxide synthase which is competitively inhibited by asymmetric dimethylarginine (ADMA). We have developed a liquid chromatography–mass spectrometric method for the simultaneous determination of endogenous ARG, labeled ARG (15N4-ARG), CIT, ADMA, and its inactive isomer, symmetric dimethylarginine (SDMA) in biological samples.MethodsConcentrations of unlabeled ARG, 15N4-ARG, CIT, ADMA, and SDMA in EA.hy926 human endothelial cell lysate, cell incubation media, rat plasma or rat urine were measured by hydrophilic-interaction liquid chromatography electrospray tandem mass spectrometry. 13C6-ARG, D4-CIT and D7-ADMA were used as internal standards for ARG and 15N4-ARG, CIT, and dimethylarginines, respectively.ResultsThe calibration curves of ARG, 15N4-ARG, CIT, ADMA, and SDMA were linear and independent of several sample matrices. Intra- and inter-day variabilities for the quantification of all the compounds were below 15% in quality control samples. Application of this method to determine the uptake as well as efflux of these compounds was illustrated through in vitro cell study by exposing human endothelial cells to 15N4-ARG, which allowed the observation of generation of 15N3-CIT and 15N3-ARG in the cell lyate. Use of these isotopes adds insights into the cellular handling of endogenous vs. exogenous ARG. Application of this method for rat plasma and rat urine assays was demonstrated after ARG oral supplementation in rats.ConclusionAn LC–MS/MS method was developed to quantify 6 ARG-related compounds simultaneously, utilizing 3 separate internal standards. This assay allows concurrent monitoring of uptake, efflux and metabolic processes when isotope-labeled ARG and CIT are measured, and can be applied for determination of these compounds in rat plasma and rat urine.  相似文献   

9.
A new method for the simple analysis of methylated amino acids based on autoradiography is introduced. With this technique a survey of protein methylation in a prokaryote, Escherichia coli, and a eukaryote, fibroblasts in culture, was carried out in an attempt to identify, quantitate, and determine the subcellular localization of all the methylated amino acids found in the proteins of these organisms.In mammalian cells using an established mouse fibroblast line (3T3), we have found that nuclei-free and mitochondria-free cytoplasm contain readily detectable amounts of four identifiable methylated amino acids: N?,N?-dimethyllysine, N?,N?,N?-trimethyllysine, NG,NG-dimethylarginine (or NG-methylarginine), and NG,N′G-dimethylarginine. The crude nuclear pellet also contains these methylated amino acids, but in addition contains N?-methyllysine and a new as yet unidentified methylated compound. Histones purified from these nuclei contain essentially the same array of methylated compounds.The ribosomal subunits of the mammalian cells contained only small amounts of the methylated amino acids; the 40S subunit contained a substantial amount of just one, NG,NG-dimethylarginine (or NG-methylarginine), and smaller amounts of NG,N′G-dimethylarginine, and an as yet unidentified methylated compound. The 60S subunit contained even smaller amounts of methylated amino acids, 50% of which was N?,N?,N?-trimethyllysine and smaller amounts of N?-methyllysine, N?,N?-dimethyllysine, and NG,NG-dimethylarginine. These subunits also contained an as yet unidentified methylated compoundThese results were in marked contrast to those that we obtained with the prokaryote, Escherichia coli. Only the proteins of the 50S ribosomal subunit of the bacteria contained methylated amino acids. Of those present 50% was N?,N?,N?-trimethyllysine, with the remainder distributed about equally between N?-methyllysine and three unknowns, one of which is apparently the same as that found in the 60S subunit of the mouse fibroblasts. All of the N?-methyllysine was apparently in the small acidic proteins, L7 and L12.  相似文献   

10.
We report a novel modification of spliceosome proteins Sm D1, Sm D3, and Sm B/B′. L292 mouse fibroblasts were labeled in vivo with [3H]methionine. Sm D1, Sm D3, and Sm B/B′ were purified from either nuclear extracts, cytosolic extracts or a cytosolic 6S complex by immunoprecipitation of the Sm protein-containing complexes and then separation by electrophoresis on a polyacrylamide gel containing urea. The isolated Sm D1, Sm D3 or Sm B/B′ proteins were hydrolyzed to amino acids and the products were analyzed by high-resolution cation exchange chromatography. Sm D1, Sm D3, and Sm B/B′ isolated from nuclear fractions were all found to contain ω-NG-monomethylarginine and symmetric ω-NG,NG′-dimethylarginine, modifications that have been previously described. In addition, Sm D1, Sm D3, and Sm B/B′ were also found to contain asymmetric ω-NG,NG-dimethylarginine in these nuclear fractions. Analysis of Sm B/B′ from cytosolic fractions and Sm B/B′ and Sm D1 from cytosolic 6S complexes showed only the presence of ω-NG-monomethylarginine and symmetric ω-NG,NG′-dimethylarginine. These results indicate that Sm D1, Sm D3, and Sm B/B′ are asymmetrically dimethylated and that these modified proteins are located in the nucleus. In reactions in which Sm D1 or Sm D3 was methylated in vitro with a hemagglutinin-tagged PRMT5 purified from HeLa cells, we detected both symmetric ω-NG,NG′-dimethylarginine and asymmetric ω-NG,NG-dimethylarginine when reactions were done in a Tris/HCl buffer, but only detected symmetric ω-NG,NG′-dimethylarginine when a sodium phosphate buffer was used. These results suggest that the activity responsible for the formation of asymmetric dimethylated arginine residues in Sm proteins is either PRMT5 or a protein associated with it in the immunoprecipitated complex.  相似文献   

11.

Background

Asymmetric dimethylarginine (ADMA) is associated with increased risk of atherosclerotic cardiovascular disease and mortality through inhibition of nitrogen oxide (NO) synthesis. As positive correlations between serum concentrations of NO and body mass index (BMI) have been observed, we aimed to explore whether the potential associations between plasma ADMA levels and the risk of acute myocardial infarction (AMI) and mortality were modified by BMI.

Methods

Multivariable Cox proportional hazard models were used to estimate the hazard ratios (HR) for AMI, cardiovascular death and all-cause mortality according to baseline plasma ADMA levels in 4122 patients with suspected stable angina pectoris. Analyses were subsequently repeated in patients with BMI below (low BMI) or above (high BMI) median.

Results

A total of 2982 patients (72%) were men. Median (range) age, plasma ADMA level and BMI were 62 (21–88) years, 0.54 (0.10–1.25) μmol/L and 26.3 (18.5–54.3) kg/m2, respectively. During a mean (standard deviation) follow-up time of 4.7 (1.4) years, 337 (8%) patients suffered from an AMI, 300 (7%) died, whereof 165 (55%) due to cardiovascular disease. Each 0.1 μmol/L increment in plasma ADMA level was associated with an increased risk of AMI (HR (95% CI) 1.21 (1.08, 1.35) and cardiovascular death 1.30 (1.13, 1.49) in participants with low BMI only. Interactions were significant for AMI (p = 0.04) and CV death (p = 0.03). BMI did not modify the association between plasma ADMA levels and all-cause mortality.

Conclusion

Plasma ADMA levels were associated with risk of AMI and cardiovascular death among patients with low BMI only.  相似文献   

12.
Proton NMR spectroscopy was applied to study the reactions of the dipeptides glycyl-glycine (Gly-Gly) and glycyl-l-alanine (Gly-l-Ala) with hydrogen tetrachloridoaurate(III) (H[AuCl4]). All reactions were performed at pH 2.0 and 3.0 and at 40 °C. The final products in these reactions were [Au(Gly-Gly-κ3NG1,NG2,OG2)Cl] and [Au(Gly-l-Ala-κ3NG,NA,OA)Cl] complexes. Tridentate coordination of the corresponding dipeptides and square-planar geometry of these Au(III) complexes was confirmed by NMR (1H and 13C) spectroscopy. This study showed that at pH < 3.0 the Au(III) ion was able to deprotonate the amide nitrogen atom. However this displacement reaction was very slow and the total concentration of the corresponding Au(III)-peptide complex formed after 5 days was less than 60% for the Gly-l-Ala or 70% for the Gly-Gly dipeptide. The kinetic data of the reactions between the Gly-Gly and Gly-l-Ala dipeptides and [AuCl4] were compared with those for the histidine-containing Gly-l-His dipeptide. The differences in the reactivity of these three dipeptides with the Au(III) ion are discussed.  相似文献   

13.
Ninhydrin-negative conjugates of basic amino acids were isolated from rat urine and were characterized. The following conjugates of basic amino acids are the compounds newly identified in animal urine specimens, Nα-acetyl-Nπ-methylhistidine, Nα-(N-acetyl-β-alanyl)histidine (N-acetylcarnosine), Nα-acetyl-NG,N′G-dimethylarginine, Nα-acetyl-NG,NG-dimethylarginine, and Nα-acetyl-N?,N?,N?-trimethyllysine.  相似文献   

14.
Radioactive gangliosides, N-[14C]-acetylneuraminylgalactosylglucosylceramide ([14C]GM3) and N- [14C]-acetylneuraminylgalactosyl-N-acetylgalactosaminyl- [N-acetylneuraminyl]-galactosylglucosylceramide ([14C]GD1a), were synthesized from CMP-[14C]sialic acid and the appropriate precursor glycolipid using specific sialyltransferase activities. These compounds were isolated and used as substrates to assay sialidase activity in HeLa cells. Although sodium butyrate added to the culture medium increased GM3 biosynthesis in HeLa cells, sialidase activity, as well as that of other glycohydrolases, was the same in control and butyrate-treated HeLa cells. The same sialidase activity appeared to hydrolyze both [14C]GM3 and [14C]GD1a, but not fetuin; the enzyme had a pH optimum of 5.0 and a Km of 75 μm for the ganglioside substrates. Although the cells contained a high sialidase activity (4–7 nmol/mg of protein/h) and could bind exogenously added [14C]GM3, no “ecto”-sialidase activity would be detected in intact cells under conditions where a close to physiological pH is maintained. The results indicate that ganglioside sialidase is not involved directly in the morphological and biochemical differentiation induced in HeLa cells by exposure to sodium butyrate.  相似文献   

15.

Aims

Asymmetric dimethylarginine (ADMA) is an endogenous competitive inhibitor of nitric oxide (NO) synthase, an enzyme responsible for the generation of NO. Plasma concentrations of ADMA increase in the elderly and in postmenopausal women. In fact, an elevated ADMA level is a risk factor of cardiovascular disease. Aerobic exercise has a beneficial effect on cardiovascular disease. However, the relationship between ADMA and aerobic fitness is unknown. The aim of this study was to determine whether plasma ADMA concentrations correlate with aerobic fitness levels in postmenopausal women.

Main methods

Thirty healthy postmenopausal women aged 50–76 years participated in this study. We measured plasma concentrations of ADMA and oxygen consumption at the ventilatory threshold (VO2VT) as an index of aerobic fitness. Subjects were divided into the low aerobic fitness (Low fitness) and high aerobic fitness (High fitness) groups, and the dividing line was set at the median VO2VT value.

Key findings

VO2VT was significantly higher in the High fitness group than in the Low fitness group (P < 0.01). The plasma ADMA concentrations in the High fitness group were significantly lower than those in the Low fitness group (P < 0.05). There was a negative correlation between plasma ADMA concentrations and VO2VT (r = − 0.532, P < 0.01).

Significance

We found that plasma ADMA concentrations were associated with aerobic fitness in postmenopausal women. The results of this study suggest that habitual aerobic exercise may decrease plasma ADMA concentrations.  相似文献   

16.
Brauer D  Tu SI 《Plant physiology》1991,95(3):707-710
Certain carboxylic acid groups within the primary structure of proton translocating proteins are thought to be involved in the proton pathway. In this report, the effects of a lipophilic carboxylic acid reactive reagent, N-cyclo-N′(4-dimethylamino-α-naphthyl)carbodiimide (NCD-4), on the two types of proton pumps in maize (Zea mays L.) root microsomes were investigated. NCD-4 was found to inhibit the vacuolar-type H+-ATPase in microsomal preparations; however, the plasma membrane-type H+-ATPase was unaffected. The H+-ATPase in highly purified tonoplast vesicles was also inhibited by NCD-4. Inhibition was dependent on the concentration and length of exposure to the reagent. However, there was little, if any, increase in the fluorescence of treated vesicles, indicating few carboxylic acid residues were reacting. Inhibition of the tonoplast H+-ATPase by NCD-4 was examined further with a partially purified preparation. The partially purified H+-ATPase also showed sensitivity to the NCD-4, supporting the hypothesis that this carboxylic acid reagent is an inhibitor of the tonoplast ATPase from maize roots.  相似文献   

17.
Asymmetric dimethylarginine (ADMA) is produced by protein methylation, a common mechanism of posttranslational protein modification. Elevated levels of ADMA lead to impaired endothelial nitric oxide production and subsequently to a range of cardiovascular and other diseases related to decreased nitric oxide production. Knowledge of the elimination pathways of ADMA and the possibility of influencing them is therefore of major clinical interest. One of these pathways is the N-acetylation and subsequent renal elimination of ADMA in the form of asymmetric Nα-acetyldimethylarginine (Ac-ADMA). In this work, we describe the first method to quantitatively determine Ac-ADMA in human plasma and urine. Ac-ADMA was separated by HPLC on a porous graphitic carbon column and selectively analyzed by tandem mass spectrometry. Ac-ADMA and the internal standard D7-Ac-ADMA were synthesized in-house. Precision and accuracy of the method were better than 5% in plasma and urine quality control samples. First results obtained with this method in samples of healthy volunteers showed plasma levels of 0.643 ± 0.454 nmol/L and urine levels of 152.7 ± 76.7 nmol/L or 13.0 ± 8.9 nmol/mmol creatinine. The method is a suitable tool for investigating this currently mostly neglected ADMA elimination pathway.  相似文献   

18.
Methylated amino acids from both 40 and 60S subunit proteins of HeLa cytoplasmic ribosome were analyzed. It was observed that methylation of ribosomal proteins occurs in both subunits with NG,NG-dimethylarginine as the major methylated amino acid. The presence of NG,NG-dimethylarginine has been identified by high-voltage paper electrophoresis, by paper chromatography, and by amino acid analysis. In addition, both ribosomal subunits contain methylated lysines with ?-N-trimethyllysine being the predominant one, followed by ?-N-dimethyllysine. Little, if any ?-N-monomethyllysine was detected in either subunit. The cytoplasmic 60S ribosomal subunit contains much more ?-N-trimethyllysine compared to the 40S ribosomal subunit. The possible biological significance of methylation was discussed.  相似文献   

19.

Background

Asymmetric dimethylarginine (ADMA), present in human serum, is an endogenous inhibitor of nitric oxide synthase and contributes to vascular disease. Dimethylarginine dimethylaminohydrolase (DDAH) is an ADMA degrading enzyme that has two isoforms: DDAHI and DDAHII. We sought to determine whether serum ADMA levels in type 2 diabetes are influenced by common polymorphisms in the DDAH1 and DDAH2 genes.

Methodology/Principal Findings

Relevant clinical parameters were measured and peripheral whole blood obtained for serum and genetic analysis on 343 participants with type 2 diabetes. Serum ADMA concentrations were determined by mass spectroscopy. Twenty six tag SNPs in the DDAH1 and 10 in the DDAH2 gene were genotyped in all subjects and tested for association with serum ADMA levels. Several SNPs and haplotypes in the DDAH genes were strongly associated with ADMA levels. Most significantly in the DDAH1 gene, rs669173 (p = 2.96×10−7), rs7521189 (p = 6.40×10−7), rs2474123 (p = 0.00082) and rs13373844 (p = 0.00027), and in the DDAH2 gene, rs3131383 (p = 0.0029) and the TGCCCAGGAG haplotype (p = 0.0012) were significantly associated with ADMA levels. Sub-analysis by diabetic retinopathy (DR) status revealed these variants were associated with ADMA levels predominantly in participants without DR. Combined analysis of the most strongly associated SNPs in DDAH1 (rs669173) and DDAH2 (rs3131383) revealed an additive effect (p = 1.37×10−8) on ADMA levels.

Conclusions/Significance

Genetic variation in the DDAH1 and 2 genes is significantly associated with serum ADMA levels. Further studies are required to determine the pathophysiological significance of elevated serum ADMA in type 2 diabetes and to better understand how DDAH gene variation influences ADMA levels.  相似文献   

20.
A method is described for the synthesis of the naturally occurring tetrapeptide tuftsin (Thr-Lys-Pro-Arg). This stimulates phagocytosis of granulocytes and macrophages. Trifluoromethanesulfonic acid is used to cleave the tetrapeptide from its supporting resin in solid-phase synthesis. This reagent also causes deprotection of several protecting groups in bifunctional residues. The most significant is the complete removal of the tosyl group from NG-tosyl-arginine-resin ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号