首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold‐intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 years before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question, we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre‐Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723 km). Some of the most compelling evidence for human‐mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695 km) than wild populations sharing rare alleles (mean = 607 km; p = .014). Collectively, the genetic data suggest that long‐distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples.  相似文献   

2.
3.
The lack of a Near Eastern genetic signature in modern European porcine breeds indicates that, although domestic pigs from the Fertile Crescent entered Europe during the Neolithic, they were completely replaced by their European counterparts in a short window of time. Whilst the absence of such genetic signature has been convincingly demonstrated at the mitochondrial level, variation at the autosomal genomes of European and Near Eastern Sus scrofa has not been compared yet. Herewith, we have explored the genetic relationships among 43 wild boar from Europe (N = 21), Near East (N = 19) and Korea (N = 3), and 40 Iberian (N = 16), Canarian (N = 4) and Mangalitza (N = 20) pigs by using a high throughput SNP genotyping platform. After data filtering, 37,167 autosomal SNPs were used to perform population genetics analyses. A multidimensional scaling plot based on genome-wide identity-by-state pairwise distances inferred with PLINK showed that Near Eastern and European wild boar populations are genetically differentiated. Maximum likelihood trees built with TreeMix supported this conclusion i.e. an early population split between Near Eastern and European Sus scrofa was observed. Moreover, analysis of the data with Structure evidenced that the sampled Iberian, Canarian and Mangalitza pigs did not carry any autosomal signature compatible with a Near Eastern ancestry, a finding that agrees well with previous mitochondrial studies.  相似文献   

4.
Enzootic pneumonia (EP) caused by Mycoplasma hyopneumoniae has a significant economic impact on domestic pig production. A control program carried out from 1999 to 2003 successfully reduced disease occurrence in domestic pigs in Switzerland, but recurrent outbreaks suggested a potential role of free-ranging wild boar (Sus scrofa) as a source of re-infection. Since little is known on the epidemiology of EP in wild boar populations, our aims were: (1) to estimate the prevalence of M. hyopneumoniae infections in wild boar in Switzerland; (2) to identify risk factors for infection in wild boar; and (3) to assess whether infection in wild boar is associated with the same gross and microscopic lesions typical of EP in domestic pigs. Nasal swabs, bronchial swabs and lung samples were collected from 978 wild boar from five study areas in Switzerland between October 2011 and May 2013. Swabs were analyzed by qualitative real time PCR and a histopathological study was conducted on lung tissues. Risk factor analysis was performed using multivariable logistic regression modeling. Overall prevalence in nasal swabs was 26.2% (95% CI 23.3–29.3%) but significant geographical differences were observed. Wild boar density, occurrence of EP outbreaks in domestic pigs and young age were identified as risk factors for infection. There was a significant association between infection and lesions consistent with EP in domestic pigs. We have concluded that M. hyopneumoniae is widespread in the Swiss wild boar population, that the same risk factors for infection of domestic pigs also act as risk factors for infection of wild boar, and that infected wild boar develop lesions similar to those found in domestic pigs. However, based on our data and the outbreak pattern in domestic pigs, we propose that spillover from domestic pigs to wild boar is more likely than transmission from wild boar to pigs.  相似文献   

5.
Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day−1. Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = −0.26, 95% CI (−0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.  相似文献   

6.
Understanding the spatio‐temporal distribution of ungulates is important for effective wildlife management, particularly for economically and ecologically important species such as wild boar (Sus scrofa). Wild boars are generally considered to exhibit substantial behavioral flexibility, but it is unclear how their behavior varies across different conservation management regimes and levels of human pressure. To analyze if and how wild boars adjust their space use or their temporal niche, we surveyed wild boars across the core and buffer zones (collectively referred to as the conservation zone) and the transition zone of a biosphere reserve. These zones represent low and high levels of human pressure, respectively. Specifically, we employed a network of 53 camera traps distributed in the Schaalsee UNESCO Biosphere Reserve over a 14‐month period (19,062 trap nights) and estimated circadian activity patterns, diel activity levels, and occupancy of wild boars in both zones. To account for differences in environmental conditions and day length, we estimated these parameters separately for seven 2‐month periods. Our results showed that the wild boars were primarily nocturnal, with diurnal activity occurring dominantly during the summer months. The diel activity patterns in the two zones were very similar overall, although the wild boars were slightly less active in the transition zone than in the conservation zone. Diel activity levels also varied seasonally, ranging from 7.5 to 11.0 h day−1, and scaled positively with the length of the night (R 2 = 0.66–0.67). Seasonal occupancy estimates were exceptionally high (point estimates ranged from 0.65 to 0.99) and similar across zones, suggesting that the wild boars used most of the biosphere reserve. Overall, this result suggests that different conservation management regimes (in this case, the zoning of a biosphere reserve) have little impact on wild boar behavior. This finding is relevant for wildlife management in protected areas where possibly high wild boar densities could interfere with conservation goals within these areas and those of agricultural land use in their vicinity.  相似文献   

7.
Patterns of genetic differentiation within and among animal populations might vary due to the simple effect of distance or landscape features hindering gene flow. An assessment of how landscape connectivity affects gene flow can help guide management, especially in fragmented landscapes. Our objective was to analyze population genetic structure and landscape genetics of the native wild boar (Sus scrofa meridionalis) population inhabiting the island of Sardinia (Italy), and test for the existence of Isolation‐by‐Distance (IBD), Isolation‐by‐Barrier (IBB), and Isolation‐by‐Resistance (IBR). A total of 393 Sardinian wild boar samples were analyzed using a set of 16 microsatellite loci. Signals of genetic introgression from introduced non‐native wild boars or from domestic pigs were revealed by a Bayesian cluster analysis including 250 reference individuals belonging to European wild populations and domestic breeds. After removal of introgressed individuals, genetic structure in the population was investigated by different statistical approaches, supporting a partition into five discrete subpopulations, corresponding to five geographic areas on the island: north‐west (NW), central west (CW), south‐west (SW), north‐central east (NCE), and south‐east (SE). To test the IBD, IBB, and IBR hypotheses, we optimized resistance surfaces using genetic algorithms and linear mixed‐effects models with a maximum likelihood population effects parameterization. Landscape genetics analyses revealed that genetic discontinuities between subpopulations can be explained by landscape elements, suggesting that main roads, urban settings, and intensively cultivated areas are hampering gene flow (and thus individual movements) within the Sardinian wild boar population. Our results reveal how human‐transformed landscapes can affect genetic connectivity even in a large‐sized and highly mobile mammal such as the wild boar, and provide crucial information to manage the spread of pathogens, including the African Swine Fever virus, endemic in Sardinia.  相似文献   

8.
Monitoring the demographics and genetics of reintroduced populations is critical to evaluating reintroduction success, but species ecology and the landscapes that they inhabit often present challenges for accurate assessments. If suitable habitats are restricted to hierarchical dendritic networks, such as river systems, animal movements are typically constrained and may violate assumptions of methods commonly used to estimate demographic parameters. Using genetic detection data collected via fecal sampling at latrines, we demonstrate applicability of the spatial capture–recapture (SCR) network distance function for estimating the size and density of a recently reintroduced North American river otter (Lontra canadensis) population in the Upper Rio Grande River dendritic network in the southwestern United States, and we also evaluated the genetic outcomes of using a small founder group (n = 33 otters) for reintroduction. Estimated population density was 0.23–0.28 otter/km, or 1 otter/3.57–4.35 km, with weak evidence of density increasing with northerly latitude (β = 0.33). Estimated population size was 83–104 total otters in 359 km of riverine dendritic network, which corresponded to average annual exponential population growth of 1.12–1.15/year since reintroduction. Growth was ≥40% lower than most reintroduced river otter populations and strong evidence of a founder effect existed 8–10 years post‐reintroduction, including 13–21% genetic diversity loss, 84%–87% genetic effective population size decline, and rapid divergence from the source population (F ST accumulation = 0.06/generation). Consequently, genetic restoration via translocation of additional otters from other populations may be necessary to mitigate deleterious genetic effects in this small, isolated population. Combined with non‐invasive genetic sampling, the SCR network distance approach is likely widely applicable to demogenetic assessments of both reintroduced and established populations of multiple mustelid species that inhabit aquatic dendritic networks, many of which are regionally or globally imperiled and may warrant reintroduction or augmentation efforts.  相似文献   

9.
Many Northeast (NE) Pacific fishes and invertebrates survived Pleistocene glaciations in northern refugia, but the extent that kelps survived in northern areas is uncertain. Here, we test the hypothesis that populations of sugar kelp (Saccharina latissima) persisted in the Gulf of Alaska during ice‐age maxima when the western margin of the Cordilleran ice sheet covered coastal areas around the NE Pacific Ocean. We estimated genetic diversities within and phylogeographical relationships among 14 populations along 2,800 km in the NE Pacific and Bering Sea with partial sequences of mitochondrial DNA 5′‐cytochrome oxidase subunit I (COI, bp = 624, n = 543), chloroplast DNA ribulose‐1,5‐bisphosphate carboxylase large subunit‐3′ (rbcL, bp = 735, n = 514), and 11 microsatellite loci. Concatenated sequences of rbcL and COI showed moderate levels of within‐population genetic diversity (mean h = 0.200) but substantial differences among populations (ΦST = 0.834, p < .0001). Microsatellites showed moderate levels of heterozygosity within populations (mean H E = 0.391). Kelps in the same organellar lineage tended to cluster together, regardless of geographic origins, as indicated in a principal coordinate analysis (PCoA) of microsatellite genotypes. The PCoA also showed evidence of nuclear hybridizations between co‐occurring organellar lineages. Individual admixture plots with population clusters of K = 2, 6, and 9 showed increasing complexity with considerable historical admixture between some clusters. A time‐calibrated phylogeny placed divergences between rbcL‐COI lineages at 1.4 million years at most. The time frames of mutation in the rbcL‐COI lineages and microsatellite population clusters differed among locations. The existence of ancient lineages in the Gulf of Alaska, moderate levels of genetic diversity, and the absence of departures from neutrality are consistent with northern refugia during multiple Croll‐Milankovitch climate cycles in the Pleistocene Epoch.  相似文献   

10.
Medium and large‐sized mammals of Jorgo‐Wato Protected Forest have not yet been documented though the forest established before four decades. Hence, this study aims to document medium and large mammals and the behavioral responses of selected mammals toward anthropogenic activities in the study area. The study was conducted from February 2015 to June 2016, encompassing the wet and dry seasons. Data were collected mainly through camera traps, indirect and direct evidence. The study revealed about 23 medium and large‐sized mammals that belong to seven orders namely Bovidae, Carnivora, Primates, Rodentia, Tubulidentata, Lagomorpha, and Hyracoidea. Papio anubis, C. guereza, and C. aethiops were the most abundant large mammals in JWPF. Because of high anthropogenic activities, African buffalo shifted its activity period from diurnal into crepuscular and nocturnal. African buffalo traveled longer distances during the wet season (mean = 14.33 km, SD = 1.25 km) than during the dry season (mean = 9.00 km, SD = 2.16 km). This could be due to the fact that the local people were less likely to go to the forest for resource exploitation during the wet season as they are fully engaged in agricultural activities. However, low agricultural activities during the dry season allow the local people to extract resources and involve in bushmeat hunting which could limit the movement of mammals to their refugia. African buffalo preferred to rest on and adjacent to a gravel road (22.1%) in the forest, followed by on open rocky hilltops (14.7%) at night time, but rest in the bottomland thicket vegetation during the dry daytime. Regardless of high human pressure in the area, this study has revealed a good number of medium and large‐sized mammals that could be used as baseline information to design a sound conservation and management action plan of large mammals and their habitat in Jorgo‐Wato Protected Forest.  相似文献   

11.
Crop raiding is a major form of human‐wildlife interaction mainly in the ecotone areas of human‐modified natural landscapes. The aim of this study was to examine the spatial pattern of crop raiding and the resultant impacts on how farmers perceive forests at different distances from Yayu Coffee Forest Biosphere Reserve which is located in southwest Ethiopia. For this, thirty transects (each 1 km long) were laid out at 200 m interval parallel to forest edges: ten transects close to forest (<0.5 km), ten at intermediate (0.5–1 km), and ten transects were taken far from forest (>1 km). Along each transect, 2–6 households were randomly selected and interviewed using semistructured questionnaire. The perception of the respondents on forests at different distances from forest edges was analyzed using Pearson''s Chi‐square test. The variation in the amount of damage among these three locations was tested using one‐way ANOVA. Four wild large mammals including olive baboon, vervet monkey, bush pigs, and crested porcupine were identified as top crop raiders in the area. The frequencies of occurrence of crop raiders decreased with increasing distance from forest edges. Similarly, the amount of damage in maize fields was higher close to forests when compared with that of either at intermediate or far from forest edges (p < .001). Eighty‐one percent of the households living close to the forests perceive that forest is a threat to their survival. Overall, our results imply that strategies need to be sought in order to minimize the socio‐ecological impacts of crop raiders mainly in locations close to forest edges.  相似文献   

12.
It was long thought that solely three different transposable elements (TEs)—the I-element, the P-element, and hobo—invaded natural Drosophila melanogaster populations within the last century. By sequencing the “living fossils” of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.  相似文献   

13.
Rhododendron meddianum is a critically endangered species with important ornamental value and is also a plant species with extremely small populations. In this study, we used double digest restriction-site-associated DNA sequencing (ddRAD) technology to assess the genetic diversity, genetic structure and demographic history of the three extant populations of R. meddianum. Analysis of SNPs indicated that R. meddianum populations have a high genetic diversity (π = 0.0772 ± 0.0024, HE = 0.0742 ± 0.002). Both FST values (0.1582–0.2388) and AMOVA showed a moderate genetic differentiation among the R. meddianum populations. Meanwhile, STRUCTURE, PCoA and NJ trees indicated that the R. meddianum samples were clustered into three distinct genetic groups. Using the stairway plot, we found that R. meddianum underwent a population bottleneck about 70,000 years ago. Furthermore, demographic models of R. meddianum and its relative, Rhododendron cyanocarpum, revealed that these species diverged about 3.05 (2.21–5.03) million years ago. This divergence may have been caused by environmental changes that occurred after the late Pliocene, e.g., the Asian winter monsoon intensified, leading to a drier climate. Based on these findings, we recommend that R. meddianum be conserved through in situ, ex situ approaches and that its seeds be collected for germplasm.  相似文献   

14.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

15.
Invasive alien species are a significant threat to both economic and ecological systems. Identifying the processes that give rise to invasive populations is essential for implementing effective control strategies. We conducted an ancestry analysis of invasive feral swine (Sus scrofa, Linnaeus, 1758), a highly destructive ungulate that is widely distributed throughout the contiguous United States, to describe introduction pathways, sources of newly emergent populations and processes contributing to an ongoing invasion. Comparisons of high‐density single nucleotide polymorphism genotypes for 6,566 invasive feral swine to a comprehensive reference set of S. scrofa revealed that the vast majority of feral swine were of mixed ancestry, with dominant genetic associations to Western heritage breeds of domestic pig and European populations of wild boar. Further, the rapid expansion of invasive feral swine over the past 30 years was attributable to secondary introductions from established populations of admixed ancestry as opposed to direct introductions of domestic breeds or wild boar. Spatially widespread genetic associations of invasive feral swine to European wild boar deviated strongly from historical S. scrofa introduction pressure, which was largely restricted to domestic pigs with infrequent, localized wild boar releases. The deviation between historical introduction pressure and contemporary genetic ancestry suggests wild boar‐hybridization may contribute to differential fitness in the environment and heightened invasive potential for individuals of admixed domestic pig–wild boar ancestry.  相似文献   

16.
Cultivated strawberry (Fragaria × ananassa) is one of our youngest domesticates, originating in early eighteenth-century Europe from spontaneous hybrids between wild allo-octoploid species (Fragaria chiloensis and Fragaria virginiana). The improvement of horticultural traits by 300 years of breeding has enabled the global expansion of strawberry production. Here, we describe the genomic history of strawberry domestication from the earliest hybrids to modern cultivars. We observed a significant increase in heterozygosity among interspecific hybrids and a decrease in heterozygosity among domesticated descendants of those hybrids. Selective sweeps were found across the genome in early and modern phases of domestication—59–76% of the selectively swept genes originated in the three less dominant ancestral subgenomes. Contrary to the tenet that genetic diversity is limited in cultivated strawberry, we found that the octoploid species harbor massive allelic diversity and that F. × ananassa harbors as much allelic diversity as either wild founder. We identified 41.8 M subgenome-specific DNA variants among resequenced wild and domesticated individuals. Strikingly, 98% of common alleles and 73% of total alleles were shared between wild and domesticated populations. Moreover, genome-wide estimates of nucleotide diversity were virtually identical in F. chiloensis,F. virginiana, and F. × ananassa (π = 0.0059–0.0060). We found, however, that nucleotide diversity and heterozygosity were significantly lower in modern F. × ananassa populations that have experienced significant genetic gains and have produced numerous agriculturally important cultivars.  相似文献   

17.
Hybridization between wild boar (Sus scrofa) and domestic pig occurred in the past and still occurs today, having great evolutionary and management implications. In fact, genetic introgression from the domestic form may alter traits like behavior, reproduction rate, and immunology in wild populations, with likely demographic impacts. Thus, it is crucial to understand under what conditions hybridization occurs in S. scrofa. Captive crosses with domestic pigs (released or escaped) have been suggested to constitute the major source of the spread of domestic genes into wild boar populations. However, to date, few studies have assessed the degree of admixture in farmed animals in comparison to the surrounding wild populations. With this purpose, we analyzed microsatellite loci in wild boar sampled in breeding stations and in the local wild population in two Italian regions (Sardinia and Piedmont). Both captive populations had lower allelic richness than the corresponding wild population, but a similar expected heterozygosity. In Piedmont, introgression from the domestic form into the wild population seems to be extremely low, while there are significant signs of admixture in the sampled breeding stations. In Sardinia, instead, the captive sample did not differ significantly from the wild population, which showed moderate signs of introgression. We conclude that hybridization in nature seems to play the key role in Sardinia, while intentional hybridization in captivity is the major source of introgression in Piedmont. Our findings emphasize the need for a routine genetic monitoring of wild boar captive populations, coupled with reference data on the neighboring wild populations.  相似文献   

18.
Conservation of large carnivores such as leopards requires large and interconnected habitats. Despite the wide geographic range of the leopard globally, only 17% of their habitat is within protected areas. Leopards are widely distributed in Nepal, but their population status and occupancy are poorly understood. We carried out the sign‐based leopard occupancy survey across the entire Chure range (~19,000 km2) to understand the habitat occupancy along with the covariates affecting their occupancy. Leopard signs were obtained from in 70 out of 223 grids surveyed, with a naïve leopard occupancy of 0.31. The model‐averaged leopard occupancy was estimated to be 0.5732 (SE 0.0082) with a replication‐level detection probability of 0.2554 (SE 0.1142). The top model shows the additive effect of wild boar, ruggedness, presence of livestock, and human population density positively affecting the leopard occupancy. The detection probability of leopard was higher outside the protected areas, less in the high NDVI (normalized difference vegetation index) areas, and higher in the areas with livestock presence. The presence of wild boar was strong predictor of leopard occupancy followed by the presence of livestock, ruggedness, and human population density. Leopard occupancy was higher in west Chure (0.70 ± SE 0.047) having five protected areas compared with east Chure (0.46 ± SE 0.043) with no protected areas. Protected areas and prey species had positive influence on leopard occupancy in west Chure range. Similarly in the east Chure, the leopard occupancy increased with prey, NDVI, and terrain ruggedness. Enhanced law enforcement and mass awareness activities are necessary to reduce poaching/killing of wild ungulates and leopards in the Chure range to increase leopard occupancy. In addition, maintaining the sufficient natural prey base can contribute to minimize the livestock depredation and hence decrease the human–leopard conflict in the Chure range.  相似文献   

19.
Investigating the range and population dynamics of introduced species provides insight into species behavior, habitat preferences, and potential of becoming established. Here, we show the current population status of the red‐necked wallaby (Notamacropus rufogriseus) in Britain based on records from an eleven‐year period (2008–2018). Records were obtained from Local Environmental Records Centres (LERCs), the National Biodiversity Network (NBN), and popular media. All records were mapped and compared to a historical distribution map (1940–2007), derived from published data. A total of 95 confirmed wallaby sightings were recorded between 2008 and 2018, of which 64 came from media sources, 18 from Local Environmental Records Centres (LERCs), seven from the National Biodiversity Network (NBN), and six from the published literature (Yalden, Br. Wildl., 24, 2013, 169). The greatest density of wallaby sightings was in southern England, with the Chiltern Hills Area of Outstanding Natural Beauty a particular hot spot (n = 11). More sightings were recorded in August than in any other month. Much of the species’ ecology and responses to British biota and anthropogenic pressures are unknown, and therefore, further research is warranted. The methods used here are widely applicable to other non‐native species, particularly those that the public are more likely to report and could be an important supplement to existing studies of conservation and management relevance.  相似文献   

20.

Aim

To evaluate the effect of lymphadenectomy and/or radiotherapy on recurrence and survival patterns in endometrial carcinoma (EC) in a radiotherapy reference centre population.

Material and Methods

A retrospective population-based review was conducted on 261 patients with stages I–III EC. Univariate and multivariate analyses were carried out. Both recurrence and survival were analysed according to patient age, FIGO stage, tumour size, myometrial invasion, tumour grade, lymphadenectomy, external beam irradiation (EBI), and brachytherapy (BT).

Results

Median age: 64.8 years. Median follow-up: 151 months. The following treatments were administered: surgery, 97.32%; lymph-node dissection, 54.4%; radiotherapy, 162 patients (62%) (EBI and BT: 64.1%, BT alone: 30.2%, EBI alone: 5.6%).Twenty-six patients (9.96%) suffered loco-regional recurrence, whilst 27 (10.34%) suffered distant failure. The 5-year overall survival (OS) for all stages was 80.1%. The 5-year disease free survival (DFS) was 92.1% for all patients. The 10-year DFS was 89.9%.The independent significant prognostic factors for a good outcome identified through the multivariate analysis were: age <75 years (p = 0.001); tumour size ≤2 cm (p = 0.003); myometrial invasion ≤50% (p = 0.011); lymphadenectomy (p = 0.02); EBI (p = 0.001); and BT (p = 0.031).Toxicity occurred in 114 of the 162 patients who received radiotherapy (70.5%). The toxicity was mainly acute, and late in only 28.3% (n = 45) of cases. The majority experienced G1-2 toxicity, and only 3% of patients experienced G3 late toxicity (5/162).

Conclusions

Our results suggest that age <75 years, tumour size ≤2 cm, myometrial invasion ≤50%, lymphadenectomy, EBI, and BT, are predictors of a good outcome in EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号