首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In North America, Mexican free-tailed bats (Tadarida brasiliensis mexicana) consume vast numbers of insects contributing to the economic well-being of society. Mexican free-tailed bats have declined due to historic guano mining, roost destruction, and bioaccumulation of organochlorine pesticides. Long-distance migrations and dense congregations at roosts exacerbate these declines. Wind energy development further threatens bat communities worldwide and presents emerging challenges to bat conservation. Effective mitigation of bat mortality at wind energy facilities requires baseline data on the biology of affected populations. We collected data on age, sex, and reproductive condition of Mexican free-tailed bats at a cave roost in eastern Nevada located 6 km from a 152-MW industrial wind energy facility. Over 5 years, we captured 46,353 Mexican free-tailed bats. Although just over half of the caught individuals were nonreproductive adult males (53.6%), 826 pregnant, 892 lactating, 10,101 post-lactating, and 4327 nonreproductive adult females were captured. Juveniles comprised 11.5% of captures. Female reproductive phenology was delayed relative to conspecific roosts at lower latitudes, likely due to cooler temperatures. Roost use by reproductive females and juvenile bats demonstrates this site is a maternity roost, with significant ecological and conservation value. To our knowledge, no other industrial scale wind energy facilities exist in such proximity to a heavily used bat roost in North America. Given the susceptibility of Mexican free-tailed bats to wind turbine mortality and the proximity of this roost to a wind energy facility, these data provide a foundation from which differential impacts on demographic groups can be assessed.  相似文献   

2.
White‐nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long‐term monitoring data to examine WNS‐related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist‐net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population‐level response to WNS, we investigated post‐WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long‐eared bat), and Perimyotis subflavus (tri‐colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long‐term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS‐affected bat populations.  相似文献   

3.
Bat fatalities at wind energy facilities in North America are predominantly comprised of migratory, tree‐dependent species, but it is unclear why these bats are at higher risk. Factors influencing bat susceptibility to wind turbines might be revealed by temporal patterns in their behaviors around these dynamic landscape structures. In northern temperate zones, fatalities occur mostly from July through October, but whether this reflects seasonally variable behaviors, passage of migrants, or some combination of factors remains unknown. In this study, we examined video imagery spanning one year in the state of Colorado in the United States, to characterize patterns of seasonal and nightly variability in bat behavior at a wind turbine. We detected bats on 177 of 306 nights representing approximately 3,800 hr of video and > 2,000 discrete bat events. We observed bats approaching the turbine throughout the night across all months during which bats were observed. Two distinct seasonal peaks of bat activity occurred in July and September, representing 30% and 42% increases in discrete bat events from the preceding months June and August, respectively. Bats exhibited behaviors around the turbine that increased in both diversity and duration in July and September. The peaks in bat events were reflected in chasing and turbine approach behaviors. Many of the bat events involved multiple approaches to the turbine, including when bats were displaced through the air by moving blades. The seasonal and nightly patterns we observed were consistent with the possibility that wind turbines invoke investigative behaviors in bats in late summer and autumn coincident with migration and that bats may return and fly close to wind turbines even after experiencing potentially disruptive stimuli like moving blades. Our results point to the need for a deeper understanding of the seasonality, drivers, and characteristics of bat movement across spatial scales.  相似文献   

4.
Artificial light at night (ALAN) is a rapidly intensifying form of environmental degradation that can impact wildlife by altering light‐mediated physiological processes that control a broad range of behaviors. Although nocturnal animals are most vulnerable, ALAN''s effects on North American bats have been surprisingly understudied. Most of what is known is based on decades‐old observations of bats around street lights with traditional lighting technologies that have been increasingly replaced by energy‐efficient broad‐spectrum lighting, rendering our understanding of the contemporary effects of ALAN on North American bats even less complete. We experimentally tested the effects of broad‐spectrum ALAN on presence/absence, foraging activity, and species composition in a Connecticut, USA bat community by illuminating foraging habitat with light‐emitting diode (LED) floodlights and comparing acoustic recordings between light and dark conditions. Lighting dramatically decreased presence and activity of little brown bats (Myotis lucifugus), which we detected on only 14% of light nights compared with 65% of dark (lights off) and 69% of control (lights removed) nights. Big brown bat (Eptesicus fuscus) activity on light nights averaged only half that of dark and control nights. Lighting did not affect presence/absence of silver‐haired bats (Lasionycteris noctivagans), but decreased their activity. There were no effects on eastern red bats (Lasiurus borealis) or hoary bats (L. cinereus), which have been described previously as light‐tolerant. Aversion to lighting by some species but not others caused a significant shift in community composition, thereby potentially altering competitive balances from natural conditions. Our results demonstrate that only a small degree of ALAN can represent a significant form of habitat degradation for some North American bats, including the endangered little brown bat. Research on the extent to which different lighting technologies, colors, and intensities affect these species is urgently needed and should be a priority in conservation planning for North America''s bats.  相似文献   

5.
Understanding animals'' behavioral and physiological responses to pathogenic diseases is critical for management and conservation. One such disease, white‐nose syndrome (WNS), has greatly affected bat populations throughout eastern North America leading to significant population declines in several species. Although tricolored bat (Perimyotis subflavus) populations have experienced significant declines, little research has been conducted on their responses to the disease, particularly in the southeastern United States. Our objective was to document changes in tricolored bat roost site use after the appearance of WNS in a hibernaculum in the southeastern U.S. and relate these to microsite temperatures, ambient conditions, and population trends. We censused a tricolored bat hibernaculum in northwestern South Carolina, USA, once each year between February 26 and March 2, 2014–2021, and recorded species, section of the tunnel, distance from the entrance, and wall temperature next to each bat. The number of tricolored bats in the hibernaculum dropped by 90.3% during the first 3 years after the arrival of WNS. However, numbers stabilized and slightly increased from 2018 to 2021. Prior to the arrival of WNS, 95.6% of tricolored bats roosted in the back portion of the tunnel that was the warmest. After the arrival of WNS, we observed a significant increase in the proportion of bats using the front, colder portions of the tunnel, particularly during the period of population stabilization and increase. Roost temperatures of bats were also positively associated with February external temperatures. Our results suggest that greater use of the colder sections of the tunnel by tricolored bats could have led to increased survival due to slower growth rates of the fungus that causes WNS in colder temperatures or decreased energetic costs associated with colder hibernation temperatures. Thus, management actions that provide cold hibernacula may be an option for long‐term management of hibernacula, particularly in southern regions.  相似文献   

6.
Little is known about the migration and movements of migratory tree-roosting bat species in North America, though anecdotal observations of migrating bats over the Atlantic Ocean have been reported since at least the 1890s. Aerial surveys and boat-based surveys of wildlife off the Atlantic Seaboard detected a possible diurnal migration event of eastern red bats (Lasiurus borealis) in September 2012. One bat was sighted approximately 44 km east of Rehoboth Beach, Delaware during a boat-based survey. Eleven additional bats were observed between 16.9 and 41.8 km east of New Jersey, Delaware, and Virginia in high definition video footage collected during digital aerial surveys. Observations were collected incidentally as part of a large baseline study of seabird, marine mammal, and sea turtle distributions and movements in the offshore environment. Digital survey methods also allowed for altitude estimation for several of these bats at >100 m above sea level. These observations provide new evidence of bat movements offshore, and offer insight into their flight heights above sea level and the times of day at which such migrations may occur.  相似文献   

7.
Studying migratory behavior of bats is challenging. Thus, most information regarding their migratory behavior is anecdotal. Recently, however, fatalities of migratory bats at some wind energy facilities across North America have provided the opportunity and impetus to study bat migration at fine spatial and temporal scales. Using acoustic monitoring and carcass searches, we examined temporal and spatial variation in activity levels and fatality rates of bats at a wind energy facility in southern Alberta, Canada. Our goals were to better understand the influence of weather variables and turbine location on the activity and fatality of hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans), and to use that understanding to predict variation in fatality rates at wind energy facilities and recommend measures to reduce fatalities. Overall activity of migratory bats and of silver-haired bats increased in low wind speeds and warm ambient temperatures, and was reduced when the wind was from the North or Northeast, whereas hoary bat activity increased with falling barometric pressure. Fatalities of migratory bats in general increased with increased activity of migratory bats, increased moon illumination, and falling barometric pressure and were influenced by the interaction between barometric pressure change and activity. Fatalities of silver-haired bats increased with increased activity, moon illumination, and winds from the south-east. Hoary bat fatalities increased with falling barometric pressure. Our results indicate that both the activity and fatality of migratory bats are affected by weather variables, but that species differ in their responses to environmental conditions. Spatially, fatalities were not influenced by the position of turbines within a turbine row, but were influenced by the location of turbines within the facility. Our findings have implications for our understanding of bat migration and efforts to reduce fatalities at wind energy facilities. To maximize the reduction of bat fatalities, operators of wind energy facilities could incorporate migratory bats' response to environmental variables, such as barometric pressure and fraction of moon illuminated, into their existing mitigation strategies. © 2011 The Wildlife Society.  相似文献   

8.
Emerging technologies based on the detection of electro‐magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts—a novel method to sample flying bats—to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near‐infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist‐netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time‐efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near‐infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture‐based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture‐based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non‐invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.  相似文献   

9.
The extent to which persisting species may fill the functional role of extirpated or declining species has profound implications for the structure of biological communities and ecosystem functioning. In North America, arthropodivorous bats are threatened on a continent‐wide scale by the spread of white‐nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans. We tested whether bat species that display lower mortality from this disease can partially fill the functional role of other bat species experiencing population declines. Specifically, we performed high‐throughput amplicon sequencing of guano from two generalist predators: the little brown bat (Myotis lucifugus) and big brown bat (Eptesicus fuscus). We then compared changes in prey consumption before versus after population declines related to WNS. Dietary niches contracted for both species after large and abrupt declines in little brown bats and smaller declines in big brown bats, but interspecific dietary overlap did not change. Furthermore, the incidence and taxonomic richness of agricultural pest taxa detected in diet samples decreased following bat population declines. Our results suggest that persisting generalist predators do not necessarily expand their dietary niches following population declines in other predators, providing further evidence that the functional roles of different generalist predators are ecologically distinct.  相似文献   

10.
Molecular approaches to calculate effective population size estimates (Ne) are increasingly used as an alternative to long‐term demographic monitoring of wildlife populations. However, the complex ecology of most long‐lived species and the consequent uncertainties in model assumptions means that effective population size estimates are often imprecise. Although methods exist to incorporate age structure into Ne estimations for long‐lived species with overlapping generations, they are rarely used owing to the lack of relevant information for most wild populations. Here, we performed a case study on an elusive woodland bat, Myotis bechsteinii, to compare the use of the parentage assignment Ne estimator (EPA) with the more commonly used linkage disequilibrium (LD) Ne estimator in detecting long‐term population trends, and assessed the impacts of deploying different overall sample sizes. We used genotypic data from a previously published study, and simulated 48 contrasting demographic scenarios over 150 years using the life history characteristics of this species The LD method strongly outperformed the EPA method. As expected, smaller sample sizes resulted in a reduced ability to detect population trends. Nevertheless, even the smallest sample size tested (n = 30) could detect important changes (60%–80% decline) with the LD method. These results demonstrate that genetic approaches can be an effective way to monitor long‐lived species, such as bats, provided that they are undertaken over multiple decades.  相似文献   

11.
12.
The expansion of anthropogenic noise poses an emerging threat to the survival and reproductive success of various organisms. Previous investigations have focused on the detrimental effects of anthropogenic noise on the foraging behavior in some terrestrial and aquatic animals. Nevertheless, the role of airport noise in impairing foraging activities of most wild animals has been neglected. Here, we aimed to assess whether foraging behavior in free‐living Japanese pipistrelle bats (Pipistrellus abramus) can be disturbed by airport noise. We used audio recording to monitor foraging activities of bats at 11 sites around the runway of a municipal airport. We quantified noise level and spectra, aircraft activity, habitat type, nightly temperature, wind speed, and moon phase for each site. The analysis revealed that noise level and aircraft activity were significant negative predictors for the number of bat passes and feeding buzzes around the runway, even after controlling for the effects of other environmental factors. There was no marked spectral overlap between bat echolocation pulses and airport noise in the presence and absence of low‐flying aircraft. The spectro‐temporal parameters of echolocation vocalizations emitted by bats were dependent on noise level, aircraft activity, and habitat type. These results provide correlative evidence that airport noise can reduce foraging activities of wild pipistrelle bats. Our findings add to the current knowledge of adverse impacts of airport noise on foraging bats in artificial ecosystems and provide a basis for further research on the mechanisms behind noise pollution near airports.  相似文献   

13.
White-Nose syndrome (WNS) is an emergent infectious disease that has already killed around six million bats in North America and has spread over two thousand kilometers from its epicenter. However, only a few studies on the possible impacts of the fungus on bat hosts were conducted, particularly concerning its implications for bat conservation. We predicted the consequences of WNS spread by generating a map with potential areas for its occurrence based on environmental conditions in sites where the disease already occurs, and overlaid it with the geographic distribution of all hibernating bats in North America. We assumed that all intersection localities would negatively affect local bat populations and reassessed their conservation status based on their potential population decline. Our results suggest that WNS will not spread widely throughout North America, being mostly restricted to the east and southeast regions. In contrast, our most pessimistic scenario of population decline indicated that the disease would threaten 32% of the bat species. Our results could help further conservation plans to preserve bat diversity in North America.  相似文献   

14.
Abstract Wind has become one of the fastest growing sources of renewable energy worldwide, but widespread and often extensive fatalities of bats have increased concern regarding the impacts of wind energy development on bats and other wildlife. We synthesized available information on patterns of bat fatalities from a review of 21 postconstruction fatality studies conducted at 19 facilities in 5 United States regions and one Canadian province. Dominance of migratory, foliage- and tree-roosting lasiurine species (e.g., hoary bat [Lasiurus cinereus]) killed by turbines was consistent among studies. Bat fatalities, although highly variable and periodic, consistently peaked in late summer and fall, coinciding with migration of lasiurines and other species. A notable exception was documented fatalities of pregnant female Brazilian freetailed bats (Tadarida brasiliensis) in May and June at a facility in Oklahoma, USA, and female silver-haired bats (Lasionycteris noctivagans) during spring in Tennessee, USA, and Alberta, Canada. Most studies reported that fatalities were distributed randomly across turbines at a site, although the highest number of fatalities was often found near the end of turbine strings. Two studies conducted simultaneously in the same region documented similar timing of fatalities between sites, which suggests broader patterns of collisions dictated by weather, prey abundance, or other factors. None of the studies found differences in bat fatalities between turbines equipped with lighting required by the Federal Aviation Administration and turbines that were unlit. All studies that addressed relationships between bat fatalities and weather patterns found that most bats were killed on nights with low wind speed (<6 m/sec) and that fatalities increased immediately before and after passage of storm fronts. Weather patterns may be predictors of bat activity and fatality; thus, mitigation efforts that focus on these high-risk periods could reduce bat fatality substantially. We caution that estimates of bat fatality are conditioned by length of study and search interval and that they are biased in relation to how searcher efficiency, scavenger removal, and habitat differences were or were not accounted for. Our review will assist managers, biologists, and decision-makers with understanding unifying and unique patterns of bat fatality, biases, and limitations of existing efforts, and it will aid in designing future research needed to develop mitigation strategies for minimizing or eliminating bat fatality at wind facilities.  相似文献   

15.
The impacts of wind energy on bat populations is a growing concern because wind turbine blades can strike and kill bats, and wind turbine development is increasing. We tested the effectiveness of 2 management actions at 2 wind-energy facilities for reducing bat fatalities: curtailing turbine operation when wind speeds were <5.0 m/second and combining curtailment with an acoustic bat deterrent developed by NRG Systems. We measured the effectiveness of the management actions using differences in counts of bat carcasses quantified by daily and twice-per-week standardized carcass searches of cleared plots below turbines, and field trials that estimated searcher efficiency and carcass persistence. We studied turbines located at 2 adjacent wind-energy facilities in northeast Illinois, USA, during fall migration (1 Aug–15 Oct) in 2018. We estimated the effectiveness of each management action using a generalized linear mixed-effects model with several covariates. Curtailment alone reduced overall bat mortality by 42.5% but did not reduce silver-haired bat (Lasionycteris noctivagans) mortality. Overall bat fatality rates were 66.9% lower at curtailed turbines with acoustic deterrents compared to turbines that operated at manufacturer cut-in speed. Curtailment and the deterrent reduced bat mortality to varying degrees between species, ranging from 58.1% for eastern red bats (Lasiurus borealis) to 94.4 for big brown bats (Eptesicus fuscus). Hoary (Lasiurus cinereus) and silver-haired bat mortality was reduced by 71.4% and 71.6%, respectively. Our study lacked a deterrent-only treatment group because of the expense of acoustic deterrents. We estimated the additional reduction in mortality with concurrent deployment of the acoustic deterrent and curtailment under the assumption that curtailment and the acoustic deterrent would have reduced mortality by the same percentage at adjacent wind-energy facilities. Acoustic deterrents resulted in 31.6%, 17.4%, and 66.7% additional reductions of bat mortality compared to curtailment alone for eastern red bat, hoary bat, and silver-haired bat, respectively. The effectiveness of acoustic deterrents for reducing bat mortality at turbines with rotor-swept area diameters >110 m is unknown because high frequency sound attenuates quickly, which reduces coverage of rotor-swept areas. Management actions should consider species differences in the ability of curtailment and deterrents to reduce bat mortality and increase energy production.  相似文献   

16.
Abstract: Bats are killed by wind turbines in North America and Europe in large numbers, yet a satisfactory explanation for this phenomenon remains elusive. Most bat fatalities at turbines thus far occur during late summer and autumn and involve species that roost in trees. In this commentary I draw on existing literature to illustrate how previous behavioral observations of the affected species might help explain these fatalities. I hypothesize that tree bats collide with turbines while engaging in mating behaviors that center on the tallest trees in a landscape, and that such behaviors stem from 2 different mating systems (resource defense polygyny and lekking). Bats use vision to move across landscapes and might react to the visual stimulus of turbines as they do to tall trees. This scenario has serious conservation and management implications. If mating bats are drawn to turbines, wind energy facilities may act as population sinks and risk may be hard to assess before turbines are built. Researchers could observe bat behavior and experimentally manipulate trees, turbines, or other tall structures to test the hypothesis that tree bats mate at the tallest trees. If this hypothesis is supported, management actions aimed at decreasing the attractiveness of turbines to tree bats may help alleviate the problem. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):845–849; 2008)  相似文献   

17.
Extensive use of torpor is a common winter survival strategy among bats; however, data comparing various torpor behaviors among species are scarce. Winter torpor behaviors are likely to vary among species with different physiologies and species inhabiting different regional climates. Understanding these differences may be important in identifying differing susceptibilities of species to white-nose syndrome (WNS) in North America. We fitted 24 Rafinesque’s big-eared bats (Corynorhinus rafinesquii) with temperature-sensitive radio-transmitters, and monitored 128 PIT-tagged big-eared bats, during the winter months of 2010 to 2012. We tested the hypothesis that Rafinesque’s big-eared bats use torpor less often than values reported for other North American cave-hibernators. Additionally, we tested the hypothesis that Rafinesque’s big-eared bats arouse on winter nights more suitable for nocturnal foraging. Radio-tagged bats used short (2.4 d ± 0.3 (SE)), shallow (13.9°C ± 0.6) torpor bouts and switched roosts every 4.1 d ± 0.6. Probability of arousal from torpor increased linearly with ambient temperature at sunset (P<0.0001), and 83% (n = 86) of arousals occurred within 1 hr of sunset. Activity of PIT-tagged bats at an artificial maternity/hibernaculum roost between November and March was positively correlated with ambient temperature at sunset (P<0.0001), with males more active at the roost than females. These data show Rafinesque’s big-eared bat is a shallow hibernator and is relatively active during winter. We hypothesize that winter activity patterns provide Corynorhinus species with an ecological and physiological defense against the fungus causing WNS, and that these bats may be better suited to withstand fungal infection than other cave-hibernating bat species in eastern North America.  相似文献   

18.
Fatalities of migratory bats, many of which use low frequency (<35 kHz; LowF) echolocation calls, have become a primary environmental concern associated with wind energy development. Accordingly, strategies to improve compatibility between wind energy development and conservation of bat populations are needed. We combined results of continuous echolocation and meteorological monitoring at multiple stations to model conditions that explained presence of LowF bats at a wind energy facility in southern California. We used a site occupancy approach to model nightly LowF bat presence while accounting for variation in detection probability among echolocation detectors and heights. However, we transposed the spatial and temporal axes of the conventional detection history matrix such that occupancy represented proportion of nights, rather than monitoring points, on which LowF bats were detected. Detectors at 22 m and 52 m above ground had greater detection probabilities for LowF bats than detectors at 2 m above ground. Occupancy of LowF bats was associated with lower nightly wind speeds and higher nightly temperatures, mirroring results from other wind energy facilities. Nevertheless, we found that building separate models for each season and considering solutions with multiple covariates resulted in better fitting models. We suggest that use of multiple environmental variables to predict bat presence could improve efficiency of turbine operational mitigations (e.g., changes to cut-in speeds) over those based solely on wind speed. Increased mitigation efficiencies could lead to greater use of mitigations at wind energy facilities with benefits to bat populations. © 2011 The Wildlife Society.  相似文献   

19.
Large numbers of bats are killed by wind turbines worldwide and minimizing fatalities is critically important to bat conservation and acceptance of wind energy development. We implemented a 2-year study testing the effectiveness of an ultrasonic acoustic deterrent for reducing bat fatalities at a wind energy facility in Pennsylvania. We randomly selected control and treatment turbines that were searched daily in summer and fall 2009 and 2010. Estimates of fatality, corrected for field biases, were compared between treatment and control turbines. In 2009, we estimated 21–51% fewer bats were killed per treatment turbine than per control turbine. In 2010, we determined an approximate 9% inherent difference between treatment and control turbines and when factored into our analysis, variation increased and between 2% more and 64% fewer bats were killed per treatment turbine relative to control turbines. We estimated twice as many hoary bats were killed per control turbine than treatment turbine, and nearly twice as many silver-haired bats in 2009. In 2010, although we estimated nearly twice as many hoary bats and nearly 4 times as many silver-haired bats killed per control turbine than at treatment turbines during the treatment period, these only represented an approximate 20% increase in fatality relative to the pre-treatment period for these species when accounting for inherent differences between turbine sets. Our findings suggest broadband ultrasound broadcasts may reduce bat fatalities by discouraging bats from approaching sound sources. However, effectiveness of ultrasonic deterrents is limited by distance and area ultrasound can be broadcast, in part due to rapid attenuation in humid conditions. We caution that an operational deterrent device is not yet available and further modifications and experimentation are needed. Future efforts must also evaluate cost-effectiveness of deterrents in relation to curtailment strategies to allow a cost-benefit analysis for mitigating bat fatalities.  相似文献   

20.
Despite long-standing awareness of the potentially important ecological role of fruit bats, we know little about the ecology of the vast majority of species. Here we report the results of a pilot satellite tracking study aimed at establishing the scale of movement of the straw-coloured fruit bat Eidolon helvum . This was the first ever attempt to track African fruit bats using satellite telemetry. We tagged four bats with solar-charged 12 g satellite transmitters at Kasanka National Park in December 2005 and obtained a combined total of 104 different location fixes over a 149-day period. Before migrating, bats foraged as far as 59 km from the roost in a single evening; by contrast, one migrating individual moved 370 km in one night. Bats travelled an average 29 km day−1 over the period of study, with bats that appeared to be migrating moving north-west from Kasanka at an average 90 km day−1. The greatest cumulative distance travelled by a single bat was 2518 km in 149 days. The results show conclusively that the straw-coloured fruit bat E. helvum is capable of migrating thousands of kilometres across central Africa on an annual basis, implying that the fruit pulse in northern Zambia is richer than anything on offer in the Democratic Republic of the Congo at the same time of the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号