首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypodactyly (Hoxa13Hd) mice have a small deletion within the coding sequence of Hoxa13 and a limb phenotype that is more severe than that of mice with an engineered null allele of Hoxa13. We used whole-mount in situ hybridization, Nile blue sulfate staining and genetic crosses to determine the basis for the phenotypic differences between these two mutants. Expression of Hoxd13 was unaffected in Hoxa13-/- mice, but its domain was reduced at the anterior and posterior margins of the autopod in Hoxa13Hd/Hd limb buds. The maturation of Hoxd11 expression was delayed and expression of Hoxa11 failed to become restricted to the autopod/zeugopod junction in both Hoxa13Hd/Hd and Hoxa13-/- limb buds compared to wild-type mice. Fgf8 expression was normal in both Hoxa13Hd/Hd and Hoxa13-/- mice throughout limb development. A dramatic increase in cell death was observed in limb bud mesenchyme of Hoxa13Hd/Hd mice as early as E11.5 but not in mice homozygous for the null allele. Genetic background was excluded as the basisforthe phenotypic differences. Compound heterozygotes (Hoxa13-/Hd) displayed an intermediate phenotype relative to both homozygotes suggesting that Hoxa13Hd has an effect on the development of the autopod beyond that which may result from a loss of HOXA13 protein. These results showthat Hoxa13Hd has a negative effect on the survival of the mesenchyme in the autopod, unlike the Hoxa13 null mutation, that cannot be explained by a failure of the AER to express Fgfs. In addition, at least one target of HOXA13 may be Hoxa11.  相似文献   

2.
3.
The role of hedgehog (HH) signaling in reproductive tract development was studied in mice in which a dominant active allele of the signal transducer smoothened (SmoM2) was conditionally expressed in the Müllerian duct and ovary. Mutant females are infertile, primarily because they fail to ovulate. Levels of mRNA for targets of HH signaling, Gli1, Ptch1, and Hhip, were elevated in reproductive tracts of 24-day-old mutant mice, confirming overactivation of HH signaling. The tracts of mutant mice developed abnormally. The uterine luminal epithelium had a simple columnar morphology in control mice, but in mutants contained stratified squamous cells typical of the cervix and vagina. In mutant mice, the number of uterine glands were reduced and the oviducts were not coiled. Expression of genes within the Hox and Wnt families that regulate patterning of the reproductive tract were altered. Hoxa13, which is normally expressed primarily in the vagina and cervix, was expressed at 12-fold higher levels in the uterus of mutant mice compared with controls. Wnt5a, which is required for development of the cervix and vagina and postnatal differentiation of the uterus, was expressed at higher levels in the oviduct and uterus of mutant mice compared with controls. Mating mutant females with fertile or vasectomized males induced a severe inflammatory response in the tract. In summary, overactivation of HH signaling causes aberrant development of the reproductive tract. The phenotype observed could be mediated by ectopic expression of Hoxa13 in the uterus and elevated levels of Wnt5a in the oviducts and uterus.  相似文献   

4.
Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia   总被引:8,自引:0,他引:8  
In humans and mice, mutations in Hoxa13 cause malformation of limb and genitourinary (GU) regions. In males, one of the most common GU malformations associated with loss of Hoxa13 function is hypospadia, a condition defined by the poor growth and closure of the urethra and glans penis. By examining early signaling in the developing mouse genital tubercle, we show that Hoxa13 is essential for normal expression of Fgf8 and Bmp7 in the urethral plate epithelium. In Hoxa13(GFP)-mutant mice, hypospadias occur as a result of the combined loss of Fgf8 and Bmp7 expression in the urethral plate epithelium, as well as the ectopic expression of noggin (Nog) in the flanking mesenchyme. In vitro supplementation with Fgf8 restored proliferation in homozygous mutants to wild-type levels, suggesting that Fgf8 is sufficient to direct early proliferation of the developing genital tubercle. However, the closure defects of the distal urethra and glans can be attributed to a loss of apoptosis in the urethra, which is consistent with reduced Bmp7 expression in this region. Mice mutant for Hoxa13 also exhibit changes in androgen receptor expression, providing a developmental link between Hoxa13-associated hypospadias and those produced by antagonists to androgen signaling. Finally, a novel role for Hoxa13 in the vascularization of the glans penis is also identified.  相似文献   

5.
6.
To better define Abd-B type homeodomain function, to test models that predict functional equivalence of all Hox genes and to initiate a search for the downstream targets of Hoxa13, we have performed a homeobox swap by replacing the homeobox of the Hoxa11 gene with that of the Hoxa13 gene. The Hoxa11 and Hoxa13 genes are contiguous Abd-B type genes located at the 5' end of the HoxA cluster. The modified Hoxa11 allele (A11(13hd)) showed near wild-type function in the development of the kidneys, axial skeleton and male reproductive tract, consistent with functional equivalence models. In the limbs and female reproductive tract, however, the A11(13hd) allele appeared to assume dominant Hoxa13 function. The uterus, in particular, showed a striking homeotic transformation towards cervix/vagina, where Hoxa13 is normally expressed. Gene chips were used to create a molecular portrait of this tissue conversion and revealed over 100 diagnostic gene expression changes. This work identifies candidate downstream targets of the Hoxa13 gene and demonstrates that even contiguous Abd-B homeoboxes have functional specificity.  相似文献   

7.
The thymus and parathyroid glands in mice develop from a thymus/parathyroid primordium that forms from the endoderm of the third pharyngeal pouch. We investigated the molecular mechanisms that promote this unique process in which two distinct organs form from a single primordium, using mice mutant for Hoxa3 and Pax1. Thymic ectopia in Hoxa3(+/-)Pax1(-/-) compound mutants is due to delayed separation of the thymus/parathyroid primordium from the pharynx. The primordium is hypoplastic at its formation, and has increased levels of apoptosis. The developing third pouch in Hoxa3(+/-)Pax1(-/-) compound mutants initiates normal expression of the parathyroid-specific Gcm2 and thymus-specific Foxn1 genes. However, Gcm2 expression is reduced at E11.5 in Pax1(-/-) single mutants, and further reduced or absent in Hoxa3(+/-)Pax1(-/-) compound mutants. Subsequent to organ-specific differentiation from the shared primordium, both the parathyroids and thymus developed defects. Parathyroids in compound mutants were smaller at their formation, and absent at later stages. Parathyroids were also reduced in Pax1(-/-) mutants, revealing a new function for Pax1 in parathyroid organogenesis. Thymic hypoplasia at later fetal stages in compound mutants was associated with increased death and decreased proliferation of thymic epithelial cells. Our results suggest that a Hoxa3-Pax1 genetic pathway is required for both epithelial cell growth and differentiation throughout thymus and parathyroid organogenesis.  相似文献   

8.
9.
Bone tissue defects cause a significant socioeconomic problem, and bone is the most frequently transplanted tissue beside blood. Autografting is considered the gold standard treatment for bone defects, but its utility is limited due to donor site morbidity. Hence much research has focused on bone tissue engineering as a promising alternative method for repair of bone defects. Marrow stromal cells (MSCs) are considered to be potential cell sources for bone tissue engineering. In bone tissue engineering using MSCs, bone is formed through intramembranous and endochondral ossification in response to osteogenic inducers. Angiogenesis is a complex process mediated by multiple growth factors and is crucial for bone regeneration. Vascular endothelial growth factor plays important roles in bone tissue regeneration by promoting the migration and differentiation of osteoblasts, and by inducing angiogenesis. Scaffold materials used for bone tissue engineering include natural components of bone, such as calcium phosphate and collagen I, and biodegradable polymers such as poly(lactide-coglycolide) However, ideal scaffolds for bone tissue engineering have yet to be found. Bone tissue engineering has been successfully used to treat bone defects in several human clinical trials to regenerate bone defects. Through investigation of MSC biology and the development of novel scaffolds, we will be able to develop advanced bone tissue engineering techniques in the future.  相似文献   

10.
The rhombencephalic neural crest play several roles in craniofacial development. They give rise to the cranial sensory ganglia and much of the craniofacial skeleton, and are vital for patterning of the craniofacial muscles. The loss of Hoxa1 or Hoxa2 function affects the development of multiple neural crest-derived structures. To understand how these two genes function together in craniofacial development, an allele was generated that disrupts both of these linked genes. Some of the craniofacial defects observed in the double mutants were additive combinations of those that exist in each of the single mutants, indicating that each gene functions independently in the formation of these structures. Other defects were found only in the double mutants demonstrating overlapping or synergistic functions. We also uncovered multiple defects in the attachments and trajectories of the extrinsic tongue and hyoid muscles in Hoxa2 mutants. Interestingly, the abnormal trajectory of two of these muscles, the styloglossus and the stylohyoideus, blocked the attachment of the hyoglossus to the greater horn of the hyoid, which in turn correlated exactly with the presence of cleft palate in Hoxa2 mutants. We suggest that the hyoglossus, whose function is to depress the lateral edges of the tongue, when unable to make its proper attachment to the greater horn of the hyoid, forces the tongue to adopt an abnormal posture which blocks closure of the palatal shelves. Unexpectedly, in Hoxa1/Hoxa2 double mutants, the penetrance of cleft palate is dramatically reduced. We show that two compensatory defects, associated with the loss of Hoxa1 function, restore normal attachment of the hyoglossus to the greater horn thereby allowing the palatal shelves to lift and fuse above the flattened tongue.  相似文献   

11.
12.
Studies of a number of mouse mutations with skeletal defects have contributed significantly to the understanding of bone development and homeostasis. In many cases, such mutants are also genetic models of disorders in humans, characterized by reduced bone mass (osteoporosis), increased bone mass (osteopetrosis), or abnormalities in endochondral ossification (chondrodysplasias).  相似文献   

13.
Hox genes control morphogenesis along the antero-posterior axis. The skeleton of vertebrates offers an exemplar readout of their activity: Hox genes control the morphology of the skeleton by defining type of vertebrae, and structure of the limbs. The head skeleton of vertebrates is formed by cranial neural crest (CNC), and mainly by a Hox-free domain of the CNC. Ectopic expression of anterior Hox genes in the CNC prevents the formation of the facial skeleton. These inhibitory effects on skeletogenesis are at odds with the recognized function of Hox genes in patterning the developing skeleton. To clarify these controversial effects, we overexpressed Hoxa2 across the entire developing endochondral skeleton in mouse. This gave rise to strong and spatially restricted effects: the most noticeable abnormalities were detected in the cranial base and consisted in a failure of bones to form or in a transformed morphology of bones. The rest of the skeleton exhibited milder defects, which never consisted in the absence or the transformation of any skeletal components. Analyses at early stages of endochondral bone development showed disorganized cell condensations in the cranial base of Col2a1-Hoxa2 transgenic embryos. We show that the distribution of Hoxa2-positive cells in Col2a1-Hoxa2 embryos does not match the wild-type developing cartilages. The Hoxa2-positive cells detected in atypical, non-chondrogenic location in the cranial base, remain as chondrocytes and lay down cartilage, indicating that Hoxa2 does not alter the fate of chondrocytes, but interferes with their spatial distribution. We propose that the ability of Hoxa2 to change the spatial distribution of cells accounts for the different phenotypes observed in Col2a1-Hoxa2 embryos; it also provides an explanation for the apparent inconsistency between the inhibitory effects of Hoxa2 on skeletal development, and the ability of Hox genes to establish the morphology of the vertebrate skeleton.  相似文献   

14.
Using the technique of in vitro steroid autoradiography, the localization and modulation of nuclear estrogen binding sites has been studied in normal human cervix and vagina during the menstrual cycle, pregnancy, and the menopause. Marked differences occur in nuclear estrogen binding between these two organs. Nuclear estrogen binding varies throughout the menstrual cycle in the vaginal epithelium, whereas vaginal stromal cells consistently exhibit nuclear estrogen binding throughout the cycle. In contrast, the cervical squamous and columnar epithelia show much less cyclic variability in nuclear estrogen binding sites. As in the vagina, the cervical stroma consistently binds estrogen. High levels of nuclear estrogen binding sites are found in the vagina of the postmenopausal patient, and lower levels of binding occur postpartum. The implications of these localizations, with special reference to the role of the cervical and vaginal stroma, are discussed.  相似文献   

15.
Homeobox gene Hoxa3 is strongly expressed in the third pharyngeal arch and pouch. We found that Hoxa3 homozygous null mutant mice had the lack of the carotid body. In all late-term mutant embryos examined (n = 10), no carotid body was present. The carotid body rudiment is formed in the wall of the third branchial artery, which develops into the common carotid artery and the first part of the internal carotid artery. The symmetrical patterns of the third, fourth, and sixth arch arteries were observed in wild-type littermates at embryonic day (E) 10.5-12.5. In Hoxa3 homozygous mutant embryos, however, the third arch artery began to degenerate at E10.5 and almost disappeared at E11.5. Furthermore, the bifurcation of the common carotid artery at the normal position, i.e., at the upper end of the larynx, was never detected in the mutant embryos at E16.5-E18.5. The common carotid artery of the homozygous mutants was separated into the internal and external carotid arteries immediately after its origin. Thus, the present study evidenced that the absence of the carotid body in Hoxa3 homozygous mutants is due to the defect of development of the third arch artery, resulting in malformation of the carotid artery system. During fetal development, the carotid body of mice is in close association with the superior cervical ganglion of the sympathetic trunk. The superior cervical ganglion rather showed hypertrophic features in Hoxa3 homozygous mutants lacking the carotid body.  相似文献   

16.
17.
18.
19.
High mobility group box 1 (HMGB1) is a chromatin protein that acts as an immunomodulatory cytokine upon active release from myeloid cells. HMGB1 is also an alarmin, an endogenous molecule released by dying cells that acts to initiate tissue repair. We have previously reported that osteoclasts and osteoblasts release HMGB1 and release by the latter is regulated by parathyroid hormone (PTH), an agent of bone remodeling. A recent study suggests that HMGB1 acts as a chemotactic agent to osteoclasts and osteoblasts during endochondral ossification. To explore the potential impact of HMGB1 in the bone microenvironment and its mechanism of release by osseous cells, we characterized the effects of recombinant protein (rHMGB1) on multiple murine bone cell preparations that together exhibit the various cell phenotypes present in bone. We also inquired whether apoptotic bone cells release HMGB1. rHMGB1 enhanced the RANKL/OPG steady state mRNA ratio and dramatically augmented the release of tumor necrosis factor-alpha (TNFalpha) and interleukin-6 (IL6) in osteoblastogenic bone marrow stromal cell (BMSC) cultures but not in the calvarial-derived MC3T3-E1 cells. Interestingly, rHMGB1 promoted GSK-3beta phosphorylation in MC3T3-E1 cells but not in BMSCs. Apoptotic bone cells released HMGB1, including MLO-Y4 osteocyte-like cells. MLO-Y4 release of HMGB1 was coincident with caspase-3 cleavage. Furthermore, the anti-apoptotic action of PTH on MC3T3-E1 cells correlated with the observed decrease in HMGB1 release. Our data suggest that apoptotic bone cells release HMGB1, that within the marrow HMGB1 is a bone resorption signal, and that intramembraneous and endochondral osteoblasts exhibit differential responses to this cytokine.  相似文献   

20.
Male genitalia are among the most phenotypically diverse morphological traits, and sexual selection is widely accepted as being responsible for their evolutionary divergence. Studies of house mice suggest that the shape of the baculum (penis bone) affects male reproductive fitness and experimentally imposed postmating sexual selection has been shown to drive divergence in baculum shape across generations. Much less is known of the morphology of female genitalia and its coevolution with male genitalia. In light of this, we used a paternal half-sibling design to explore patterns of additive genetic variation and covariation underlying baculum shape and female vaginal tract size in house mice (Mus musculus domesticus). We applied a landmark-based morphometrics approach to measure baculum size and shape in males and the length of the vaginal tract and width of the cervix in females. Our results reveal significant additive genetic variation in house mouse baculum morphology and cervix width, as well as evidence for genetic covariation between male and female genital measures. Our data thereby provide novel insight into the potential for the coevolutionary divergence of male and female genital traits in a mammal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号