首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Conditions are described for the RNA-directed cell-free synthesis of the three galactose enzymes of Escherichia coli. Together with the DNA-directed synthesis described previously, this system permits the measurement of the three gene-products encoded by the gal operon as active enzymes synthesized in vitro in response to either gal-DNA or gal-RNA. The yield of enzyme is proportional to the amount of RNA added. Thus, the RNA-directed enzyme synthesis can serve as an assay system for functional mRNA. This test has been employed to determine the kinetics of synthesis and degradation of functional gal mRNA under the conditions of cell-free enzyme synthesis. The functional half-life of gal mRNA in this system is 6–7 minutes and is higher than expected from in vivo measurements.In contrast to the DNA-directed cell-free synthesis, the RNA-directed synthesis of the galactose enzymes is neither stimulated by cyclic adenosine-3:5-monophosphate nor by inducer.  相似文献   

3.
A convenient new procedure for the purification of galactokinase, galactose-1-phosphate uridyltransferase, and UDP-galactose 4-epimerase overexpressed in Escherichia coli is presented. The procedure is shorter than any other described in the literature and facilitates the purification of the three recombinant enzymes in considerable amounts and at high purity and specific activity. The purified gal operon enzymes were biochemically characterized by gel-filtration column chromatography and isoelectric focusing, and the Km values for their substrates were determined.  相似文献   

4.
The beta-methyl-galactoside- and galactose-specific transport systems of Escherichia coli were shown by experiments involving inhibitors and the use of an adenosine triphosphatase mutant strain to utilize adenosine 5'-triphosphate or a related compound to drive active transport. These systems were shown to be unable to use the activated-membrane state. The galactose-specific transport system was shown to behave most like a member of the binding-protein class of transport systems by its response to osmotic shock and vesicle formation. These results extended to two sugar transport systems: the correlation between the source of energy and class of transport system found by Berger (1973) for amino acid transport systems. That is, binding-protein systems utilized adenosine 5'-triphosphate whereas membrane-bound systems utilized the activated-membrane state to drive active transport.  相似文献   

5.
6.
Over a wide range of growth rates, two strains of Escherichia coli growing aerobically in continuous culture under glucose limitation utilized glucose at rates identical with those at which cells harvested from the chemostats transported [14C]glucose.  相似文献   

7.
8.
9.
10.
Summary Two active enzymes of the galactose operon of Escherichia coli, uridyl transferase and galactokinase have been synthesized with high yields in a DNA dependent system for protein synthesis. The unspecific blank values amount to less than two percent of the rate obtained under optimal conditions and permit the accurate determination of even a small fraction of the maximum synthesis rate. Therefore this system provides a sensitive assay for the biological activity of DNA that contains the intact galactose operon of Escherichia coli.The synthesis of these galactose enzymes is to a high extent dependent on the presence of cyclic adenosine-3:5-monophosphate.D-fucose, known as an inducer of the galactose operon in vivo, stimulates the synthesis of galactokinase, indicating that the repressor of the galactose operon in active under these conditions. This stimulation is not observed, if the bacterial extract is prepared from a strain defective for the galactose repressor or if the DNA carries an operator constitutive mutation in the galactose operon. Therefore the stimulation by D-fucose is true derepression.  相似文献   

11.
An unsteady, unstructured, unsegregated and based on first principles mathematical model has been proposed to describe IPTG (isopropyl-β-d-tiogalactopiranoside) transport in induced fed-batch cultures of E. coli M15 ΔglyA [pQEαβrham] [pREP4] producing rhamnulose 1-phosphate aldolase (RhuA). The model predicts extracellular and intracellular IPTG concentration. Experimental extracellular IPTG concentrations under different operational conditions were obtained by HPLC–MS analysis. These experimental data were used to fit the parameters of the model. The model was also able to predict the experimental behavior of two different E. coli strains producing fuculose 1-phosphate aldolase (FucA). IPTG transport to cells was the contribution of three processes: a diffusion process, and two active processes (one non-specific and another specific).  相似文献   

12.
1. Strains of Escherichia coli were obtained containing either the AraE or the AraF transport system for arabinose. AraE+,AraF- strains effected energized accumulation and displayed an arabinose-evoked alkaline pH change indicative of arabinose-H+ symport. In contrast, AraE-,AraF+ strains accumulated arabinose but did not display H+ symport. 2. The ability of different sugars and their derivatives to elicit sugar-H+ symport in AraE+ strains was examined. Only L-arabinose and D-fucose were good substrates, and arabinose was the only inducer. 3. Membrane vesicles prepared from an AraE+,AraF+ strain accumulated the sugar, energized most efficiently by the respiratory substrates ascorbate + phenazine methosulphate. Addition of arabinose or fucose to an anaerobic suspension of membrane vesicles caused an alkaline pH change indicative or sugar-H+ symport on the membrane-bound transport system. 4. Kinetic studies and the effects of arsenate and uncoupling agents in intact cells and membrane vesicles gave further evidence that AraE is a low-affinity membrane-bound sugar-H+ symport system and that AraF is a binding-protein-dependent high-affinity system that does not require a transmembrane protonmotive force for energization. 5. The interpretation of these results is that arabinose transport into E. coli is energized by an electrochemical gradient of protons (AraE system) or by phosphate bond energy (AraF system). 6. In batch cultures the rates of growth and carbon cell yields on arabinose were lower in AraE-,AraF+ strains than in AraE+,AraF- or AraE+,AraF+ strains. The AraF system was more susceptible to catabolite repression than was the AraE system. 7. The properties of the two transport systems for arabinose are compared with those of the genetically and biochemically distinct transport systems for galactose, GalP and MglP. It appears that AraE is analogous to GalP, and AraF to MglP.  相似文献   

13.
14.
15.
16.
17.
18.
A new expression system was developed by introducing two major modifications into the genome of Escherichia coli: a deletion in the gal operon (DeltagalEKT) to allow the use of the inexpensive compound galactose as a gratuitous inducer and the introduction of the gal P2 promoter driving the expression of the T7 RNA polymerase. The novel JRR10 strain containing these two features gives high-level expression of a reporter gene cloned under the T7 phi10 promoter in high cell density cultures. The cost of the induction of this novel system is more than 30 times lower than that of the IPTG-induced system of the widely used BL21 strain.  相似文献   

19.
20.
J V Staros  J R Knowles 《Biochemistry》1978,17(16):3321-3325
A dipeptide containing a nitrene precursor, glycyl-4-azido-2-nitro-L-phenylalanine, has been synthesized. This compound is a photoaffinity inhibitor of dipeptide transport in E. coli. In the dark, the dipeptide is a reversible inhibitor of glycylglycine uptake by live E. coli W cells. The 14C-labeled compound is a substrate for the transport system, with a Km of 7 micrometer and V max of 5 x 10(3) molecules cell-1 s-1 (compare 9 micrometer and 1 x 10(4) molecules cell-1 s-1, respectively, for the transport of glycylglycine under the same conditions). When intact E. coli cells are photolyzed at approximately 350 nm in the presence of the photolabile dipeptide, their ability to transport either glycylglycine or unphotolyzed glycyl-4-azido-2-nitro-L-phenylalanine is irreversibly inhibited, but their ability to transport arginine is unaffected. The presence of glycylglycine in the medium during photolysis protects the cells against the light-dependent inactivation of dipeptide transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号