首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Saccharomyces cerevisiae, the redundant YCK1 and YCK2 genes (Yeast Casein Kinase 1) are required for viability. We describe here the molecular analysis of four mutations that eliminate the requirement for Yck activity. These mutations alter proteins that resemble the four subunits of clathrin adaptors (APs), with highest sequence similarity to those of the recently identified AP-3 complex. The four yeast subunits are associated in a high-molecular-weight complex. These proteins have no essential function and are not redundant for function with other yeast AP-related proteins. Combination of suppressor mutations with a clathrin heavy chain mutation (chc1-ts) confers no synthetic growth defects. However, a yck(ts) mutation shows a strong synthetic growth defect with chc1-ts. Moreover, endocytosis of Ste3p is dramatically decreased in yck(ts) cells and is partially restored by the AP suppressor mutations. These results suggest that vesicle trafficking at the plasma membrane requires the activity of Yck protein kinases, and that the new AP-related complex may participate in this process.  相似文献   

2.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

3.
Heterotetrameric adaptor (AP) complexes are thought to coordinate cargo recruitment and clathrin assembly during clathrin-coated vesicle biogenesis. We have identified, and characterized the physiological significance of clathrin-binding activities in the two large subunits of the AP-1 complex in Saccharomyces cerevisiae . Using GST-fusion chromatography, two clathrin-binding sites were defined in the β1 subunit that match consensus clathrin-binding sequences in other mammalian and yeast clathrin-binding proteins. Clathrin interactions were also identified with the C-terminal region of the γ subunit. When introduced into chromosomal genes, point mutations in the β1 clathrin-binding motifs, or deletion of the γ C-terminal region, reduced association of AP-1 with clathrin in coimmunoprecipitation assays. The β1 mutations or the γ truncation individually produced minor effects on AP-1 distribution by subcellular fractionation. However, when β1 and γ mutations were combined, severe defects were observed in AP-1 association with membranes and incorporation into clathrin-coated vesicles. The combination of subunit mutations accentuated growth and α-factor pheromone maturation defects in chc1-ts cells, though not to the extent caused by complete loss of AP-1 activity. Our results suggest that both the β1 and γ subunits contribute interactions with clathrin that are important for stable assembly of AP-1 complexes into clathrin coats in vivo .  相似文献   

4.
Yeast TGN resident proteins that frequently cycle between the TGN and endosomes are much more slowly transported to the prevacuolar/late endosomal compartment (PVC) than other proteins. However, TGN protein transport to the PVC is accelerated in mutants lacking function of Inp53p. Inp53p contains a SacI polyphosphoinositide phosphatase domain, a 5-phosphatase domain, and a proline-rich domain. Here we show that all three domains are required to mediate "slow delivery" of TGN proteins into the PVC. Although deletion of the proline-rich domain did not affect general membrane association, it caused localization to become less specific. The proline-rich domain was shown to bind to two proteins, including clathrin heavy chain, Chc1p. Unlike chc1 mutants, inp53 mutants do not mislocalize TGN proteins to the cell surface, consistent with the idea that Chc1p and Inp53p act at a common vesicular trafficking step but that Chc1p is used at other steps also. Like mutations in the AP-1 adaptor complex, mutations in INP53 exhibit synthetic growth and transport defects when combined with mutations in the GGA proteins. Taken together with other recent studies, our results suggest that Inp53p and AP-1/clathrin act together in a TGN-to-early endosome pathway distinct from the direct TGN-to-PVC pathway mediated by GGA/clathrin.  相似文献   

5.
The role of clathrin in retention of Golgi membrane proteins has been investigated. Prior work showed that a precursor form of the peptide mating pheromone alpha-factor is secreted by Saccharomyces cerevisiae cells which lack the clathrin heavy chain gene (CHC1). This defect can be accounted for by the observation that the Golgi membrane protein Kex2p, which initiates maturation of alpha-factor precursor, is mislocalized to the cell surface of mutant cells. We have examined the localization of two additional Golgi membrane proteins, dipeptidyl aminopeptidase A (DPAP A) and guanosine diphosphatase (GDPase) in clathrin-deficient yeast strains. Our findings indicate that DPAP A is aberrantly transported to the cell surface but GDPase is not. In mutant cells carrying a temperature-sensitive allele of CHC1 (chc1-ts), alpha-factor precursor appears in the culture medium within 15 min, and Kex2p and DPAP A reach the cell surface within 30 min, after imposing the nonpermissive temperature. In contrast to these immediate effects, a growth defect is apparent only after 2 h at the nonpermissive temperature. Also, sorting of the vacuolar membrane protein, alkaline phosphatase, is not affected in chc1-ts cells until 2 h after the temperature shift. A temperature-sensitive mutation which blocks a late stage of the secretory pathway, sec1, prevents the appearance of mislocalized Kex2p at the cell surface of chc1-ts cells. We propose that clathrin plays a direct role in the retention of specific proteins in the yeast Golgi apparatus, thereby preventing their transport to the cell surface.  相似文献   

6.
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans‐Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc‐YR) , which fused the N‐terminus of yeast CHC (1–1312) to the rat CHC residues 1318–1675, including the CHC trimerization region. The novel CHC‐YR allele encoded a stable protein that fractionated as a trimer. CHC‐YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC‐YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc‐YR‐GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1‐GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC‐YR, indicating that Chc‐YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc‐YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non‐trimerization roles for the clathrin LC.  相似文献   

7.
Clathrin-associated adaptor protein (AP) complexes are major structural components of clathrin-coated vesicles, functioning in clathrin coat assembly and cargo selection. We have carried out a systematic biochemical and genetic characterization of AP complexes in Saccharomyces cerevisiae. Using coimmunoprecipitation, the subunit composition of two complexes, AP-1 and AP-2R, has been defined. These results allow assignment of the 13 potential AP subunits encoded in the yeast genome to three AP complexes. As assessed by in vitro binding assays and coimmunoprecipitation, only AP-1 interacts with clathrin. Individual or combined disruption of AP-1 subunit genes in cells expressing a temperature-sensitive clathrin heavy chain results in accentuated growth and alpha-factor pheromone maturation defects, providing further evidence that AP-1 is a clathrin adaptor complex. However, in cells expressing wild-type clathrin, the same AP subunit deletions have no effect on growth or alpha-factor maturation. Furthermore, gel filtration chromatography revealed normal elution patterns of clathrin-coated vesicles in cells lacking AP-1. Similarly, combined deletion of genes encoding the beta subunits of the three AP complexes did not produce defects in clathrin-dependent sorting in the endocytic and vacuolar pathways or alterations in gel filtration profiles of clathrin-coated vesicles. We conclude that AP complexes are dispensable for clathrin function in S. cerevisiae under normal conditions. Our results suggest that alternative factors assume key roles in stimulating clathrin coat assembly and cargo selection during clathrin-mediated vesicle formation in yeast.  相似文献   

8.
The sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present in the cytosolic tails of the proteins. A subset of these signals conform to the [DE]XXXL[LI] consensus motif and mediate sorting via interactions with heterotetrameric adaptor protein (AP) complexes. However, the identity of the AP subunits that recognize these signals remains controversial. We have used a yeast three-hybrid assay to demonstrate that [DE]XXXL[LI]-type signals from the human immunodeficiency virus negative factor protein and the lysosomal integral membrane protein II interact with combinations of the gamma and sigma1 subunits of AP-1 and the delta and sigma3 subunits of AP-3, but not the analogous combinations of AP-2 and AP-4 subunits. The sequence requirements for these interactions are similar to those for binding to the whole AP complexes in vitro and for function of the signals in vivo. These observations reveal a novel mode of recognition of sorting signals involving the gamma/delta and sigma subunits of AP-1 and AP-3.  相似文献   

9.
Localization of Kex2 protease (Kex2p) to the yeast trans-Golgi network (TGN) requires a TGN localization signal (TLS) in the Kex2p C-terminal cytosolic tail. Mutation of the TLS accelerates transport of Kex2p to the vacuole by an intracellular (SEC1-independent) pathway. In contrast, inactivation of the clathrin heavy-chain gene CHC1 results in transport of Kex2p and other Golgi membrane proteins to the cell surface. Here, the relationship of the two localization defects was assessed by examining the effects of a temperature-sensitive CHC1 allele on trafficking of wild-type (WT) and TLS mutant forms of Kex2p. Inactivation of clathrin by shifting chc1-ts cells to 37 degrees C caused WT and TLS mutant forms of Kex2p to behave identically. All forms of Kex2p appeared at the plasma membrane within 30-60 min of the temperature shift. TLS mutant forms of Kex2p were stabilized, their half-lives increasing to that of wild-type Kex2p. After inactivation of clathrin heavy chain, vacuolar protease-dependent degradation of all forms of Kex2p was blocked by a sec1 mutation, which is required for secretory vesicle fusion to the plasma membrane, indicating that transport to the cell surface was required for degradation by vacuolar proteolysis. Finally, after clathrin inactivation, all forms of Kex2p were degraded in part by a vacuolar protease-independent pathway. After inactivation of both chc1-ts and sec1-ts, Kex2 was degraded exclusively by this pathway. We conclude that the effects of clathrin inactivation on Kex2p localization are independent of the Kex2p C-terminal cytosolic tail. Although these results neither prove nor rule out a direct interaction between the Kex2 TLS and a clathrin-dependent structure, they do imply that clathrin is required for the intracellular transport of Kex2p TLS mutants to the vacuole.  相似文献   

10.
Clathrin-coated vesicles are involved in protein and lipid trafficking between intracellular compartments in eukaryotic cells. AP-2 and AP180 are the resident coat proteins of clathrin-coated vesicles in nerve terminals, and interactions between these proteins could be important in vesicle dynamics. AP180 and AP-2 each assemble clathrin efficiently under acidic conditions, but neither protein will assemble clathrin efficiently at physiological pH. We find that there is a direct, clathrin-independent interaction between AP180 and AP-2 and that the AP180-AP-2 complex is more efficient at assembling clathrin under physiological conditions than is either protein alone. AP180 is phosphorylated in vivo, and in crude vesicle extracts its phosphorylation is enhanced by stimulation of casein kinase II, which is known to be present in coated vesicles. We find that recombinant AP180 is a substrate for casein kinase II in vitro and that its phosphorylation weakens both the binding of AP-2 by AP180 and the cooperative clathrin assembly activity of these proteins. We have localized the binding site for AP-2 to amino acids 623-680 of AP180. The AP180/AP-2 interaction can be disrupted by a recombinant AP180 fragment containing the AP-2 binding site, and this fragment also disrupts the cooperative clathrin assembly activity of the AP180-AP-2 complex. These results indicate that AP180 and AP-2 interact directly to form a complex that assembles clathrin more efficiently than either protein alone. Phosphorylation of AP180, by modulating the affinity of AP180 for AP-2, may contribute to the regulation of clathrin assembly in vivo.  相似文献   

11.
Here we report the identification and characterization of AP-4, a novel protein complex related to the heterotetrameric AP-1, AP-2, and AP-3 adaptors that mediate protein sorting in the endocytic and late secretory pathways. The key to the identification of this complex was the cloning and sequencing of two widely expressed, mammalian cDNAs encoding new homologs of the adaptor beta and sigma subunits named beta4 and sigma4, respectively. An antibody to beta4 recognized in human cells an approximately 83-kDa polypeptide that exists in both soluble and membrane-associated forms. Gel filtration, sedimentation velocity, and immunoprecipitation experiments revealed that beta4 is a component of a multisubunit complex (AP-4) that also contains the sigma4 polypeptide and two additional adaptor subunit homologs named mu4 (mu-ARP2) and epsilon. Immunofluorescence analyses showed that AP-4 is associated with the trans-Golgi network or an adjacent structure and that this association is sensitive to the drug brefeldin A. We propose that, like the related AP-1, AP-2, and AP-3 complexes, AP-4 plays a role in signal-mediated trafficking of integral membrane proteins in mammalian cells.  相似文献   

12.
The beta 1 and beta 2 subunits are the closely-related large chains of the trans-Golgi network AP-1 and the plasma membrane AP-2 clathrin-associated protein complexes, respectively. Recombinant beta 1 and beta 2 subunits have been generated in Escherichia coli. It was found that, in the absence of all the other AP subunits, beta 1 and beta 2 interact with clathrin and drive the efficient assembly of clathrin coats. In addition, beta 2 subunits and AP complexes compete for the same clathrin binding site. The appearance of the clathrin/beta coats is the same as the barrel-shaped structures formed with native AP complexes. It is proposed that the principal function of the beta subunits is to initiate coat formation, while the remaining subunits of the AP complexes have other roles in coated pit and coated vesicle function.  相似文献   

13.
Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B, and mice knocked out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knockdown of AP-1A causes missorting of basolateral proteins in MDCK cells, but only after knockdown of AP-1B, suggesting that AP-1B can compensate for lack of AP-1A. AP-1A localizes predominantly to the TGN, and its knockdown promotes spillover of basolateral proteins into common recycling endosomes, the site of function of AP-1B, suggesting complementary roles of both adaptors in basolateral sorting. Yeast two-hybrid assays detect interactions between the basolateral signal of transferrin receptor and the medium subunits of both AP-1A and AP-1B. The basolateral sorting function of AP-1A reported here establishes AP-1 as a major regulator of epithelial polarity.  相似文献   

14.
The clathrin adaptors AP-1 and AP-2 bind cargo proteins via two types of motifs: tyrosine-based Yxx phi and dileucine-based [DE]XXXL[LI]. Although it is well established that Yxx phi motifs bind to the mu subunits of AP-1 or AP-2, dileucine motifs have been reported to bind to either the mu or beta subunits of these adaptors as well as the gamma/sigma1 hemicomplex of AP-1. To clarify this controversy, the various subunits of AP-1 and AP-2 were expressed individually and in hemicomplex form in insect cells, and they were used in glutathione S-transferase pull-down assays to determine their binding properties. We report that the gamma/sigma1 or alpha/sigma2 hemicomplexes bound the dileucine-based motifs of several proteins quite strongly, whereas binding by the beta1/mu1 and beta2/mu2 hemicomplexes, and the individual beta or mu subunits, was extremely weak or undetectable. The gamma/sigma1 and alpha/sigma2 hemicomplexes displayed substantial differences in their preference for particular dileucine-based motifs. Most strikingly, an aspartate at position -4 compromised binding to the gamma/sigma1 hemicomplex, whereas minimally affecting binding to alpha/sigma2. There was an excellent correlation between binding to the alpha/sigma2 hemicomplex and in vivo internalization mediated by the dileucine-based sorting signals. These findings provide new insights into the trafficking mechanisms of D/EXXXL[LI]-mediated sorting signals.  相似文献   

15.
16.
The sequence of the clathrin heavy chain gene, CHC1, from Saccharomyces cerevisiae is reported. The gene encodes a protein of 1,653 amino acids that is 50% identical to the rat clathrin heavy chain (HC) (Kirchhausen, T., S. C. Harrison, E. P. Chow, R. J. Mattaliano, R. L. Ramachandran, J. Smart, and J. Brosius. 1987. Proc. Natl. Acad. Sci. USA. 84:8805-8809). The alignment extends over the complete length of the two proteins, except for a COOH-terminal extension of the rat HC and a few small gaps, primarily in the globular terminal domain. The yeast HC has four prolines in the region of the rat polypeptide that was proposed to form the binding site for clathrin light chains via an alpha-helical coiled-coil interaction. The yeast protein also lacks the COOH-terminal Pro-Gly rich segment present in the last 45 residues of the rat HC, which were proposed to be involved in the noncovalent association of HCs to form trimers at the triskelion vertex. To examine the importance of the COOH terminus of the HC for clathrin function, a HC containing a COOH-terminal deletion of 57 amino acids (HC delta 57) was expressed in clathrin-deficient yeast (chc1-delta). HC delta 57 rescued some of the phenotypes (slow growth at 30 degrees, genetic instability, and defects in mating and sporulation) associated with the chc1-delta mutation to normal or near normal. Also, truncated HCs were assembled into triskelions. However, cells with HC delta 57 were temperature sensitive for growth and still displayed a major defect in processing of the mating pheromone alpha-factor. Fewer coated vesicles could be isolated from cells with HC delta 57 than cells with the wild-type HC. This suggests that the COOH-terminal region is not required for formation of trimers, but it may be important for normal clathrin-coated vesicle structure and function.  相似文献   

17.
Clathrin-mediated vesicular transport is important for normal growth of the yeast Saccharomyces cerevisiae. Previously, we identified a genetic locus (SCD1) that influences the ability of clathrin heavy-chain-deficient (Chc-) yeast cells to survive. With the scd1-v allele, Chc- yeast cells are viable but grow poorly; with the scd1-i allele, Chc- cells are inviable. To identify the SCD1 locus and other genes that can rescue chc1 delta scd1-i cells to viability, a multicopy suppressor selection strategy was developed. A strain of scd1-i genotype carrying the clathrin heavy-chain gene under GAL1 control (GAL1:CHC1) was transformed with a YEp24 yeast genomic library, and colonies that could grow on glucose were selected. Plasmids from six distinct genetic loci, none of which encoded CHC1, were recovered. One of the suppressor loci was shown to be UBI4, the polyubiquitin gene. UBI4 rescues only in high copy number and is not allelic to SCD1. The conjugation of ubiquitin to intracellular proteins can mediate their selective degradation. Since UBI4 is required for survival of yeast cells under stress and is induced during starvation, ubiquitin expression in GAL1:CHC1 cells was examined. After a shift to growth on glucose to repress synthesis of clathrin heavy chains, UBI4 mRNA levels were elevated > 10-fold, whereas the quantity of free ubiquitin declined severalfold relative to that of Chc+ cells. In addition, novel higher-molecular-weight ubiquitin conjugates appeared in clathrin-deficient cells. We suggest that higher levels of ubiquitin are required for turnover of mislocalized or improperly processed proteins that accumulate in the absence of clathrin and that ubiquitin may play a general role in turnover of proteins in the secretory or endocytic pathway.  相似文献   

18.
The human immunodeficiency virus type 1 virulence protein Nef interacts with the endosomal sorting machinery via a leucine-based motif. Similar sequences within the cytoplasmic domains of cellular transmembrane proteins bind to the adaptor protein (AP) complexes of coated vesicles to modulate protein traffic, but the molecular basis of the interactions between these motifs and the heterotetrameric complexes is controversial. To identify the target of the Nef leucine motif, the native sequence was replaced with either leucine- or tyrosine-based AP-binding sequences from cellular proteins, and the interactions with AP subunits were correlated with function. Tyrosine motifs predictably modulated the interactions between Nef and the mu subunits of AP-1, AP-2, and AP-3; heterologous leucine motifs caused little change in these interactions. Conversely, leucine motifs mediated a ternary interaction between Nef and hemicomplexes containing the sigma1 plus gamma subunits of AP-1 or the sigma3 plus delta subunits of AP-3, whereas tyrosine motifs did not. Similarly, only leucine motifs supported the Nef-mediated association of AP-1 and AP-3 with endosomal membranes in cells treated with brefeldin A. Functionally, Nef proteins containing leucine motifs down-regulated CD4 from the cell surface and enhanced viral replication, whereas those containing tyrosine motifs were inactive. Apparently, the interaction of Nef with the mu subunits of AP complexes is insufficient for function. A leucine-specific mode of interaction that likely involves AP hemicomplexes is further required for Nef activity. The mu and hemicomplex interactions may cooperate to yield high avidity binding of AP complexes to Nef. This binding likely underlies the unusual ability of Nef to induce the stabilization of these complexes on endosomal membranes, an activity that correlates with enhancement of viral replication.  相似文献   

19.
Amphiphysin 1 and 2 are proteins implicated in the recycling of synaptic vesicles in nerve terminals. They interact with dynamin and synaptojanin via their COOH-terminal SH3 domain, whereas their central regions contain binding sites for clathrin and for the clathrin adaptor AP-2. We have defined here amino acids of amphiphysin 1 crucial for binding to AP-2 and clathrin. Overexpression in Chinese hamster ovary cells of an amphiphysin 1 fragment that binds both AP-2 and clathrin resulted in a segregation of clathrin, which acquired a diffuse distribution, from AP-2, which accumulated at patches also positive for Eps15. These effects correlated with a block in clathrin-mediated endocytosis. A fragment selectively interacting with clathrin produced a similar effect. These results can be explained by the binding of amphiphysin to the NH(2)-terminal domain of clathrin and by a competition with the binding of this domain to the beta-subunit of AP-2 and AP180. The interaction of amphiphysin 1 with either clathrin or AP-2 did not prevent its interaction with dynamin, supporting the existence of tertiary complexes between these proteins. Together with previous evidence indicating a direct interaction between amphiphysin and membrane lipids, these findings support a model in which amphiphysin acts as a multifunctional adaptor linking the membrane to coat proteins and coat proteins to dynamin and synaptojanin.  相似文献   

20.
A role for clathrin in AP-3–dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3–dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain–FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and colocalizes with endogenous and recombinant FKBP chimeric clathrin polypeptides in PC12-cell endosomes. AP-3 displays, however, a divergent behavior from AP-1, AP-2, and clathrin chains. AP-3 cofractionates with clathrin-coated vesicle fractions isolated from PC12 cells even after clathrin function is acutely inhibited by AP20187. We predicted that AP20187 would inhibit AP-3 vesicle formation from endosomes after a brefeldin A block. AP-3 vesicle formation continued, however, after brefeldin A wash-out despite impairment of clathrin function by AP20187. These findings indicate that AP-3–clathrin association is dispensable for endosomal AP-3 vesicle budding and suggest that endosomal AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号