首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Gerald T. Babcock  Kenneth Sauer 《BBA》1975,376(2):329-344
Rapid light-induced transients in EPR Signal IIf (F?+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q? is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E08.0 = +480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential.A model is proposed in which Q?, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F?+). At high potentials D is oxidized in the dark, and the (Q? + F?+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.  相似文献   

3.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226).  相似文献   

4.
Shigeru Itoh 《BBA》1978,504(2):324-340
A hypothesis is proposed to explain the change in the apparent rate constant for the reaction between the primary electron acceptor of System II situated in the thylakoid membrane and the artificial electron acceptors added in the medium. Dark oxidation rate of the primary acceptor by artificial electron acceptors was monitored by measuring the induction of chlorophyll fluorescence in the presence of an electron transport inhibitor, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea, in spinach chloroplasts. The apparent rate constant for the oxidation changed widely when the medium pH or salt concentrations were varied, or ionic detergents were added. The change was quantitatively ascribed (1) to the change in the local concentration of electron acceptors at the thylakoid surface due to the electrical potential difference between the surface and the bulk aqueous phase (Gouy-Chapman diffuse double layer theory) and (2) to the situation whereby the apparent rate constant is determined with respect to concentration in the bulk phase.Values for the surface potential in the vicinity of System II were estimated from the change in the apparent rate constant under various conditions. The results closely agreed with those obtained previously from the rate constant of the dark step of the System II-dependent Hill reaction with ferricyanide (Itoh, S. (1978) Plant Cell Physiol. 19, 149–166).Application of the hypothesis to various reactions between the added ionic reagents and the endogenous components in the membrane or between the endogenous components situated in different parts of the membrane is discussed.  相似文献   

5.
Plant materials (intact leaves, chloroplasts or subchloroplast particles) preilluminated at a low temperature (e.g. −60°C) were rapidly cooled to −196°C and then the luminescence emitted from the sample on raising the temperature was measured as a function of temperature, by means of a sensitive photo-electron counting technique. Mature spinach leaves showed five luminescence bands at different temperatures which were denoted as Zv, A, B1, B2 and C bands. The A, B1, B2 and C bands appeared at constant temperatures, −10, +25, +40 and +55°C, respectively, being independent of the illumination temperature, but the Zv band appeared at a variable temperature slightly higher than the illumination temperature. The B1 and B2 bands were absent in the thermoluminescence profiles of samples devoid of the oxygenevolving activity, such as heat-treated spinach leaves, wheat leaves greened under intermittent illumination and photosystem-II particles prepared with Triton X-100. It was deduced that these luminescence bands arise from the energy stored by the electron flow in photosystem II to evolve oxygen, and other bands were ascribed to charge-separation in some other sites not related to the oxygen evolving system.  相似文献   

6.
7.
J.A. Van Best  L.N.M. Duysens 《BBA》1977,459(2):187-206
The kinetics of the luminescence of chlorophyll a in Chlorella vulgaris were studied in the time range from 0.2 μs to 20 μs after a short saturating flash (t12 = 25 ns) under various pretreatment including anaerobiosis, flashes, continuous illumination and various additions. A 1 μs luminescence component probably originating from System II was found of which the relative amplitude was maximum under anaerobic conditions for reaction centers in the state SPQ? before the flash, about one third for centers in the state S+PQ? or SPQ before the flash, and about one tenth for centers in the state S+PQ before the flash. S is the secondary donor complex with zero charge; S+ is the secondary donor complex with 1 to 3 positive charges; P, the primary donor, is the photoactive chlorophyll a, P-680, of reaction center 2; Q? is the reduced acceptor of System II, Q. Under aerobic conditions, where an endogenous quencher presumably was active, the luminescence was reduced by a factor two.The 1 μs decay of the luminescence is probably caused by the disappearance of P+ formed in the laser flash according to the reaction ZP+ → Z+P in which Z is the molecule which donates an electron to P+ and which is part of S. After addition of hydroxylamine, the 1 μs luminescence component changed with the incubation time exponentially (τ = 27 s) into a 30 μs component; during the same time, the variable fluorescence yield, measured 9 μs after the laser flash, decreased by a factor 2 with the same time constant. Hereafter in a second much slower phase the fluorescence yield decreased as an exponential function of the incubation time to about the dark value; meanwhile the 30 μs luminescence increased about 50% with the same time constant (τ = 7 min). Heat treatment abolished both luminescence components.The 1 μs luminescence component saturated at about the same energy as the System II fluorescence yield 60 μs after the laser flash and as the slower luminescence components. From the observation that the amplitude is maximum if the laser flash is given when the fluorescence yield is high after prolonged anaerobic conditions (state SQ?), we conclude that the 1 μs luminescence is probably caused by the reaction
PWQ?+hv → P1WQ?P+W?Q?P1WQ? → PWQ?+hv
in which W is an acceptor different from Q. The presence of S+ reduced the luminescence amplitude to about one third. Two models are discussed, one with W as an intermediate between P and Q and another, which gives the best interpretation, with W on a side path.  相似文献   

8.
J. Barber  G.F.W. Searle  C.J. Tredwell 《BBA》1978,501(2):174-182
The MgCl2-induced chlorophyll fluorescence yield changes in broken chloroplasts, suspended in a cation-free medium, treated with 3,-(3′,4′-dichlorophenyl)-1,1-dimethylurea and pre-illuminated, has been investigated on a picosecond time scale. Chloroplasts in the low fluorescing state showed a fluorescence decay law of the form exp ?At12, where A was found to be 0.052 ps?12, and may be attributed to the rate of spillover from Photosystem II to Photosystem I. Addition of 10 mM MgCl2 produced a 50% increase in the steady-state fluorescence quantum yield and caused a marked decrease in the decay rate. The fluorescence decay law was found to be predominantly exponential with a 1/e lifetime of 1.6 ns. These results support the hypothesis that cation-induced changes in the fluorescence yield of chlorophyll are related to the variations in the rate of energy transfer from Photosystem II to Photosystem I, rather than to changes in the partitioning of absorbed quanta between the two systems.  相似文献   

9.
J.A. Van Best  P. Mathis 《BBA》1978,503(1):178-188
Absorption changes (ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t12 = 20–40 μs, and a minor phase with t12 ? 200 μs), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

10.
Ted Mar  John Brebner  Guy Roy 《BBA》1975,376(2):345-353
Induction curves of the delayed light emission in spinach chloroplasts were studied by measuring the decay kinetics after each flash of light. This study differs from previous measurements of the induction curves where only the intensities at one set time after each flash of light were recorded. From the decay kinetics after each flash of light, the induction curves of the delayed light emission measured 2 ms after a flash of light were separated into two components: one component due to the last flash only and one component due to all previous flashes before the last one. On comparing the delayed light induction curves of the two components with the fluorescence induction curves in chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and in chloroplasts treated with hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the component due to the last flash only is found to be dependent on the concentration of open reaction centers and the component due to all previous flashes except the last is dependent on the concentration of closed reaction centers. This implies that the yield of the fast decaying component of the delayed light emission is dependent on the concentration of open reaction centers and the yield of the slow decaying component is dependent on the concentration of closed reaction centers.  相似文献   

11.
Yuichiro Nishizaki 《BBA》1978,503(1):170-177
KCl-induced luminescence in relation to slow delayed light emission (> 3 s) and pH shift-triggered luminescence was studied in preilluminated chloroplasts. An activation pathway for KCl-induced luminescence similar to that for acid-base-triggered luminescence but different from that for delayed light emission is suggested.When the chloroplasts were subjected to a small amount of pH transition together with a simultaneous addition of KCl, a synergistic enhancement of triggered luminescence was observed. The synergism was not observed when the pH transition was increased. The results are interpreted according to the protonation model for stimulated luminescence.  相似文献   

12.
13.
A.L. Etienne 《BBA》1974,333(3):497-508
The effects of NH2OH and carbonyl cyanide m-chlorophenylhydrazone (CCCP) on 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated algae and chloroplasts were studied. In the presence of DCMU, the photochemically separated charges can only disappear through a recombination back reaction; both substances induce an irreversible reduction of the donor side and after sufficient illumination their action in the presence of DCMU leads to the formation of a permanent fluorescent state.

In the DCMU + CCCP system, a fast fluorescence induction curve is observed. The fluorescence yield is brought to its maximum by two flashes. The luminescence emission is strongly inhibited and most centers reach their permanent fluorescent state after one flash.

In the DCMU + NH2OH system, a slow fluorescence rise is observed and several saturating flashes are needed for the fluorescence yield to reach its maximum. The exhaustion of the NH2OH oxidizing capacity and the complete transformation to a permanent fluorescent state also require a large number of flashes.

The reduction pathway catalyzed by CCCP appears to be a good competitor to the back reaction, while NH2OH seems to be a relatively inefficient donor.

In addition the action of NH2OH and CCCP on fluorescence suggests that the donor side influences the quenching properties of Photosystem II centers. A possible mechanism is proposed.  相似文献   


14.
E.S. Canellakis  G. Akoyunoglou 《BBA》1976,440(1):163-175
Spinach chloroplasts exposed to iodide can be washed free of the bulk of the iodide. In the presence of lactoperoxidase and H2O2, iodide can be introduced into chloroplasts in high amounts and in non diffusible forms. The resultant particles, which have been named iodochloroplasts, extrude their iodide upon stimulation by light. The form and the amount of extruded iodide bears a definite relationship to the amount of incident light. A flash of marginally effective light is additive to the next such flash even after a lapse of 10 min of darkness. These and other properties of iodochloroplasts may make them of great use in the study of intermediate reactions of photosynthesis.  相似文献   

15.
G. Girault  J.M. Galmiche 《BBA》1974,333(2):314-319
The restoration by silicotungstic acid of the reversible light-induced pH rise mediated by pyocyanine in EDTA-treated chloroplasts corresponds to an irreversible fixation of the acid. The proton uptake is linearly related to the amount of fixed acid (4 protons per molecule of acid) as long as the amount of silicotungstic acid does not exceed 200 nmoles/mg of chlorophyll.In the same conditions silicotungstic acid partly restores ferricyanide reduction and O2 evolution in chloroplasts suspensions supplemented with DCMU. These photoreactions are observed only with chloroplasts and these chloroplasts must have an unimpaired water-splitting mechanism.Silicotungstic acid does not impair DCMU fixation on the specific sites. More likely in its presence the properties of the membrane change and ferricyanide can accept electrons from a part of the electron transport chain, between the Photosystem II reaction center and the block of the electron flow by DCMU.  相似文献   

16.
P.C. Brandon  O. Elgersma 《BBA》1973,292(3):753-762
Reactions at the reducing side of Photosystem II in spinach chloroplasts are modified by α-benzyl-α-bromo-malodinitrile (BBMD).On addition of 50 μM BBMD to chloroplasts the following phenomena can be observed: (1) electron flow to an acceptor like 2,6-dichlorophenolindophenol is partly deflected to electron flow to oxygen; (2) the electron flow to oxygen is carbonyl cyanide m-chlorophenylhydrazone sensitive but 3-(3,4-dichlorophenyl)-1,1-dimethylurea insensitive; (3) variable fluorescence is abolished but basal fluorescence is not altered; (4) a strong photobleaching of carotenoids is induced. BBMD seems a very efficient acceptor for electrons from the primary electron acceptor of Photosystem II, resulting in a BBMD-mediated electron transport from this primary acceptor to oxygen.On pretreatment of chloroplasts with 50 μM BBMD the effects are different; (1) electron flow to 2,6-dichlorophenolindophenol, ferricyanide, or NADP is almost completely inhibited and is not restored by addition of artificial electron donors: (2) no electron flow to oxygen is observable unless BBMD again is added to reaction media; (3) no variable fluorescence is observable but basal fluorescence is not affected; (4) there is no photobleaching of carotenoids unless BBMD again is added; (5) no reduction of C-550 can be recorded. Pretreatment of chloroplasts with BBMD seems to induce an intense cycling of electrons around Photosystem II and only anew added BBMD can interrupt this cycling.  相似文献   

17.
In bicarbonate-depleted chloroplasts, the chlorophyll a fluorescence decayed with a halftime of about 150 ms after the third flash, and appreciably faster after the first and second flash of a series of flashes given after a dark period. After the fourth to twentieth flashes, the decay was also slow. After addition of bicarbonate, the decay was fast after all the flashes of the sequence. This indicates that the bicarbonate depletion inhibits the reoxidation of the secondary acceptor R2− by the plastoquinone pool; R is the secondary electron acceptor of pigment system II, as it accepts electrons from the reduced form of the primary electron acceptor (Q). This conclusion is consistent with the measurements of the DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea)-induced chlorophyll a fluorescence after a series of flashes in the presence and the absence of bicarbonate, if it is assumed that DCMU not only causes reduction of Q if added in the state QR, but also if added in the state QR2−.  相似文献   

18.
19.
The kinetic behaviours of cytochrome b-563 and cytochrome f are shown to be consistent with their participation in coupled cyclic electron flow in intact chloroplasts. Electron transfer between cytochromes b-563 and cytochrome f is antimycin sensitive. Fluorescence induction studies indicate that plastoquinone may function in a coupled step between the cytochromes.  相似文献   

20.
G.H. Krause 《BBA》1973,292(3):715-728
Certain long-term fluorescence phenomena observed in intact leaves of higher plants and in isolated chloroplasts show a reverse relationship to light-induced absorbance changes at 535 nm (“chloroplast shrinkage”).

1. 1. In isolated chloroplasts with intact envelopes strong fluorescence quenching upon prolonged illumination with red light is accompanied by an absorbance increase. Both effects are reversed by uncoupling with cyclohexylammonium chloride.

2. 2. The fluorescence quenching is reversed in the dark with kinetics very similar to those of the dark decay of chloroplast shrinkage.

3. 3. In intact leaves under strong illumination with red light in CO2-free air a low level of variable fluorescence and a strong shrinkage response are observed. Carbon dioxide was found to increase fluorescence and to inhibit shrinkage.

4. 4. Under nitrogen, CO2 caused fluorescence quenching and shrinkage increase at low concentrations. At higher CO2 levels fluorescence was increased and shrinkage decreased.

5. 5. In the presence of CO2, the steady-state yield of fluorescence was lower under nitrogen than under air, whereas chloroplast shrinkage was stimulated in nitrogen and suppressed in air.

6. 6. These results demonstrate that the fluorescence yield does not only depend on the redox state of the quencher Q, but to a large degree also on the high-energy state of the thylakoid system associated with photophosphorylation.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号